期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
Revealing the key role of non-solvating diluents for fast-charging and low temperature Li-ion batteries 被引量:1
1
作者 Yuping Zhang Siyin Li +8 位作者 Junkai Shi Jiawei Lai Ziyue Zhuang Jingwen Liu Wenming Yang Liang Ma Yue-Peng Cai Jijian Xu Qifeng Zheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期171-180,共10页
Fast-charging and low temperature operation are of vital importance for the further development of lithium-ion batteries(LIBs),which is hindered by the utilization of conventional carbonate-based electrolytes due to t... Fast-charging and low temperature operation are of vital importance for the further development of lithium-ion batteries(LIBs),which is hindered by the utilization of conventional carbonate-based electrolytes due to their slow kinetics,narrow operating temperature and voltage range.Herein,an acetonitrile(AN)-based localized high-concentration electrolyte(LHCE)is proposed to retain liquid state and high ionic conductivity at ultra-low temperatures while possessing high oxidation stability.We originally reveal the excellent thermal shielding effect of non-solvating diluent to prevent the aggregation of Li^(+) solvates as temperature drops,maintaining the merits of fast Li transport and facile desolvation as at room temperature,which bestows the graphite electrode with remarkable low temperature performance(264 mA h g^(-1) at-20 C).Remarkably,an extremely high capacity retention of 97%is achieved for high-voltage high-energy graphite||NCM batteries after 250 cycles at-20 C,and a high capacity of 110 mA h g^(-1)(71%of its room-temperature capacity)is retained at-30°C.The study unveils the key role of the non-solvating diluents and provides instructive guidance in designing electrolytes towards fast-charging and low temperature LIBs. 展开更多
关键词 Li-ion battery fast-charging Low temperature Non-solvating diluent Shielding effect
下载PDF
High-Voltage and Fast-Charging Lithium Cobalt Oxide Cathodes: From Key Challenges and Strategies to Future Perspectives
2
作者 Gongrui Wang Zhihong Bi +3 位作者 Anping Zhang Pratteek Das Hu Lin Zhong-Shuai Wu 《Engineering》 SCIE EI CAS CSCD 2024年第6期105-127,共23页
Lithium-ion batteries(LIBs)with the“double-high”characteristics of high energy density and high power density are in urgent demand for facilitating the development of advanced portable electronics.However,the lithiu... Lithium-ion batteries(LIBs)with the“double-high”characteristics of high energy density and high power density are in urgent demand for facilitating the development of advanced portable electronics.However,the lithium ion(Li+)-storage performance of the most commercialized lithium cobalt oxide(LiCoO_(2),LCO)cathodes is still far from satisfactory in terms of high-voltage and fast-charging capabilities for reaching the double-high target.Herein,we systematically summarize and discuss high-voltage and fast-charging LCO cathodes,covering in depth the key fundamental challenges,latest advancements in modification strategies,and future perspectives in this field.Comprehensive and elaborated discussions are first presented on key fundamental challenges related to structural degradation,interfacial instability,the inhomogeneity reactions,and sluggish interfacial kinetics.We provide an instructive summary of deep insights into promising modification strategies and underlying mechanisms,categorized into element doping(Li-site,cobalt-/oxygen-site,and multi-site doping)for improved Li+diffusivity and bulkstructure stability;surface coating(dielectrics,ionic/electronic conductors,and their combination)for surface stability and conductivity;nanosizing;combinations of these strategies;and other strategies(i.e.,optimization of the electrolyte,binder,tortuosity of electrodes,charging protocols,and prelithiation methods).Finally,forward-looking perspectives and promising directions are sketched out and insightfully elucidated,providing constructive suggestions and instructions for designing and realizing high-voltage and fast-charging LCO cathodes for next-generation double-high LIBs. 展开更多
关键词 Lithium cobalt oxide High energy/power density fast-charging HIGH-VOLTAGE Lithium-ion battery
下载PDF
Porous Co_(2)VO_(4) Nanodisk as a High-Energy and Fast-Charging Anode for Lithium-Ion Batteries 被引量:5
3
作者 Jinghui Ren Zhenyu Wang +12 位作者 Peng Xu Cong Wang Fei Gao Decheng Zhao Shupei Liu Han Yang Di Wang Chunming Niu Yusong Zhu Yutong Wu Xiang Liu Zhoulu Wang Yi Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第1期107-120,共14页
High-energy–density lithium-ion batteries(LIBs)that can be safely fast-charged are desirable for electric vehicles.However,sub-optimal lithiation potential and low capacity of commonly used LIBs anode cause safety is... High-energy–density lithium-ion batteries(LIBs)that can be safely fast-charged are desirable for electric vehicles.However,sub-optimal lithiation potential and low capacity of commonly used LIBs anode cause safety issues and low energy density.Here we hypothesize that a cobalt vanadate oxide,Co_(2)VO_(4),can be attractive anode material for fast-charging LIBs due to its high capacity(~1000 mAh g^(−1))and safe lithiation potential(~0.65 V vs.Li^(+)/Li).The Li+diffusion coefficient of Co2VO4 is evaluated by theoretical calculation to be as high as 3.15×10^(-10) cm^(2) s^(−1),proving Co_(2)VO_(4) a promising anode in fast-charging LIBs.A hexagonal porous Co2VO4 nanodisk(PCVO ND)structure is designed accordingly,featuring a high specific surface area of 74.57 m^(2) g^(−1) and numerous pores with a pore size of 14 nm.This unique structure succeeds in enhancing Li^(+) and electron transfer,leading to superior fast-charging performance than current commercial anodes.As a result,the PCVO ND shows a high initial reversible capacity of 911.0 mAh g^(−1) at 0.4 C,excellent fast-charging capacity(344.3 mAh g^(−1) at 10 C for 1000 cycles),outstanding long-term cycling stability(only 0.024% capacity loss per cycle at 10 C for 1000 cycles),confirming the commercial feasibility of PCVO ND in fast-charging LIBs. 展开更多
关键词 Lithium-ion batteries ANODE fast-charging HIGH-ENERGY Cobalt vanadate oxide
下载PDF
Regulating the growth of lithium dendrite by coating an ultra-thin layer of gold on separator for improving the fast-charging ability of graphite anode 被引量:3
4
作者 Shuaishuai Yan Xiaoxia Chen +5 位作者 Pan Zhou Peican Wang Hangyu Zhou Weili Zhang Yingchun Xia Kai Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第4期467-473,共7页
With the ever-growing application of lithium-ion batteries(LIBs), their fast-charging technology has attracted great interests of scientists. However, growth of lithium dendrites during fast charge of the bat teries w... With the ever-growing application of lithium-ion batteries(LIBs), their fast-charging technology has attracted great interests of scientists. However, growth of lithium dendrites during fast charge of the bat teries with high energy density may pose great threats to the operation and cause serious safety issues Herein, we prepared a functional separator with an ultra-thin(20 nm) layer of Au nanoparticles deposited by evaporation coating method which could regulate growth direction and morphology of the lithium dendrites, owing to nearly zero overpotential of lithium meal nucleation on lithiated Au. Once the Li den drites are about to form on the graphite anode during fast charging(or lithiation), they plate predomi nantly on the Au deposited separator rather than on the graphite. Such selective deposition does no compromise the electrochemical performance of batteries under normal cycling. More importantly, i enables the better cycling stability of batteries at fast charge condition. The Li/Graphite cells with Au nanoparticles coated separator could cycle stably with a high areal capacity retention of 90.5% over 95 cycles at the current density of 0.72 m A cm^(-2). The functional separator provides an effective strategy to adjust lithium plating position at fast charge to ensure high safety of batteries without a compromise on the energy density of LIBs. 展开更多
关键词 fast-charging Functional separator Lithium-ion batteries DENDRITES Safety
下载PDF
Hybrid ion/electron interfacial regulation stabilizes the cobalt/oxygen redox of ultrahigh-voltage lithium cobalt oxide for fast-charging cyclability
5
作者 Zhihong Bi Anping Zhang +4 位作者 Gongrui Wang Cong Dong Pratteek Das Xiaoyu Shi Zhong-Shuai Wu 《Science Bulletin》 SCIE EI CAS CSCD 2024年第13期2071-2079,共9页
High-voltage and fast-charging LiCoO_(2)(LCO)is key to high-energy/power-density Li-ion batteries.However,unstable surface structure and unfavorable electronic/ionic conductivity severely hinder its high-voltage fast-... High-voltage and fast-charging LiCoO_(2)(LCO)is key to high-energy/power-density Li-ion batteries.However,unstable surface structure and unfavorable electronic/ionic conductivity severely hinder its high-voltage fast-charging cyclability.Here,we construct a Li/Na-B-Mg-Si-O-F-rich mixed ion/electron interface network on the 4.65 V LCO electrode to enhance its rate capability and long-term cycling stability.Specifically,the resulting artificial hybrid conductive network enhances the reversible conversion of Co^(3+)/^(4+)/O_(2)/nredox by the interfacial ion–electron cooperation and suppresses interface side reactions,inducing an ultrathin yet compact cathode electrolyte interphase.Simultaneously,the derived near-surface Na+/Mg2+/Si^(4+)-pillared local intercalation structure greatly promotes the Li^(+)diffusion around the 4.55 V phase transition and stabilizes the cathode interface.Finally,excellent 3 C(1 C=274 mA g1)fast charging performance is demonstrated with 73.8%capacity retention over 1000 cycles.Our findings shed new insights to the fundamental mechanism of interfacial ion/electron synergy in stabilizing and enhancing fast-charging cathode materials. 展开更多
关键词 HIGH-VOLTAGE fast-charging LiCoO_(2) Interfacial ion-electron cooperation Local intercalation
原文传递
An Ion-Pumping Interphase on Graphdiyne/Graphite Heterojunction for Fast-Charging Lithium-Ion Batteries
6
作者 Juan An Fan Wang +2 位作者 Jia-Yue Yang Guoxing Li Yuliang Li 《CCS Chemistry》 CSCD 2024年第1期110-124,共15页
The sluggish lithium-ion(Li-ion)transport kinetics in graphite anode hinders its application in fast-charging Li-ion batteries(LIBs).Here,we develop an ionpumping interphase(IPI)on graphdiyne(GDY)/graphite heterojunct... The sluggish lithium-ion(Li-ion)transport kinetics in graphite anode hinders its application in fast-charging Li-ion batteries(LIBs).Here,we develop an ionpumping interphase(IPI)on graphdiyne(GDY)/graphite heterojunction anodes to boost the ionic transport kinetics and enable high-performance,fast-charging LIBs.The IPI changed the ion solvation/desolvation environment by covalent/non-covalent interactions with Li ions or solvents to optimize solid-electrolyte interphase(SEI)and regulate Li-ion transport behavior.We studied the in situ growth of few-layer GDY on graphite surface(GDY/graphite)as the IPI and found that the strong interaction between GDY and Li ions enabled surface-induced modification of the ion solvation behavior and surface-assisted desolvation effect to accelerate the Li-ion desolvation process.A functional anion-derived SEI layer with improved Li-ion conductivity was created.Together with the generated built-in electric field at GDY/graphite hetero-interface self-pumping Li ions to intercalate into the graphite,the Li-ion transport kinetics was significantly enhanced to effectively eliminate Li plating and large voltage polarization of the graphite anodes.A fast Li intercalation in GDY/graphite without Li oversaturation at the edge of the graphite was directly observed.The superior performance with high capacity(139.2 mA h g^(-1))and long lifespan(1650 cycles)under extremely fast-charging conditions(20 C,1 C=372 mA g^(-1))was achieved on GDY/graphite anodes.Even at low temperatures(-20℃),a specific capacity of 128.4 mA h g^(-1) was achieved with a capacity retention of 80%after 500 cycles at a 2 C rate. 展开更多
关键词 extreme fast-charging lithium-ion batteries lithium-ion transport kinetics ion-pumping interphase graphdiyne/graphite heterojunction
下载PDF
Mechanically flexible V_(3)S_(4)@carbon composite fiber as a high-capacity and fast-charging anode for sodium-ion capacitors 被引量:3
7
作者 Zhi-Fei Mao Xiao-Jun Shi +8 位作者 Tao-Qiu Zhang Peng-Ju Liang Rui Wang Jun Jin Bei-Bei He Yan-Sheng Gong Qiang Wang Xi-Li Tong Huan-Wen Wang 《Rare Metals》 SCIE EI CAS CSCD 2023年第8期2633-2642,共10页
Hybrid Na-ion capacitors(NICs)have received considerable interests owing to their low-cost,high-safety,and rapidly charging energy-storage characteristics.The NICs are composed of a capacitor-type cathode and a batter... Hybrid Na-ion capacitors(NICs)have received considerable interests owing to their low-cost,high-safety,and rapidly charging energy-storage characteristics.The NICs are composed of a capacitor-type cathode and a battery-type anode.The major challenge for NICs is to search for suitable electrode materials to overcome the sluggish diffusion of Na^(+)in the anode.Herein,ultrafine vanadium sulfide is encapsulated in carbon fiber(V_(3)S_(4)@CNF)as a self-supported electrode by electrospinning and in situ sulfurization.The carbon cladding and one-dimensional(ID)nanofiber network-like structure could alleviate the volume expansion of V_(3)S_(4)during Na^(+)de-/intercalation process.Consequently,the V_(3)S_(4)@CNF anode exhibited a pseudocapacitive sodium storage in terms of large Na^(+)-storage capacity(476 mAh·g^(-1)at 0.1A·g^(-1)),high-rate capability(290 mAh·g^(-1)at 20.0 A·g^(-1))and excellent cycling stability(95%capacity retention for1500 cycles at 2.0 A·g^(-1))in Na half-cells.By employing V_(3)S_(4)@CNF as the anode and the activated carbon(AC)cathode,the as-assembled NICs could deliver a high energy density of 110 Wh·kg^(-1)at a power density of200 W·kg^(-1).Even at a high power of 10,000 W·kg^(-1),the specific energy is still up to 42 Wh·kg^(-1). 展开更多
关键词 Electrospinning Na-ion capacitor(NIC) NANOFIBERS Vanadium sulfide fast-charging
原文传递
Sub-nanometer structured silicon-carbon composite nanolayers armoring on graphite for fast-charging and high-energy-density lithium-ion batteries 被引量:3
8
作者 Zhen-Wei Li Mei-Sheng Han Jie Yu 《Rare Metals》 SCIE EI CAS CSCD 2023年第11期3692-3704,共13页
Silicon/carbon composites are promising alternatives to current graphite anodes in commercial lithiumion batteries(LIBs)because of their high capacity and excellent safety.Nevertheless,the unsatisfactory fastcharging ... Silicon/carbon composites are promising alternatives to current graphite anodes in commercial lithiumion batteries(LIBs)because of their high capacity and excellent safety.Nevertheless,the unsatisfactory fastcharging capability and cycle stability of Si/C composites caused by slow charge transport capability and huge volume change under industrial electrode conditions severely hamper their development.Here,a novel Si/C anode was fabricated by homogeneously depositing amorphous C-Si nanolayers on graphite(C-Si@graphite).C-Si nanolayers with uniformly dispersed sub-nanometer Si particles in 3D carbon skeleton significantly boost electron and Li-ion transport and efficiently relieve Si's agglomeration and volume change.As a result,the tailored C-Si@graphite electrodes show an excellent rate capacity(760.3 mAh·g^(-1)at 5.0C)and long cycle life of over 1000 cycles at 1.0C and800 cycles at 2.0C under industrial electrode conditions.In addition,the assembled full cells(C-Si@graphite,anode;Li[Ni_(0.8)Co_(0.1)Mn_(0.1)]O_(2),cathode)present superior fastcharging capability(240.4 Wh·kg^(-1),charging for16.2 min,3.0C)and long cycle life(80.7%capacity retention after 500 cycles at 1.0C),demonstrating the massive potential of C-Si@graphite for practical application. 展开更多
关键词 Si/C anode Sub-nanometer Si fast-charging capability Lithium-ion batteries(LIBs)
原文传递
SiO-Sn_(2)Fe@C composites with uniformly distributed Sn_(2)Fe nanoparticles as fast-charging anodes for lithium-ion batteries 被引量:3
9
作者 Hanyin Zhang Renzong Hu +2 位作者 Sirui Feng Zhiqun Lin Min Zhu 《eScience》 2023年第1期62-70,共9页
SiO-based materials represent a promising class of anodes for lithium-ion batteries(LIBs),with a high theoretical capacity and appropriate and safe Li-insertion potential.However,SiO experiences a large volume change ... SiO-based materials represent a promising class of anodes for lithium-ion batteries(LIBs),with a high theoretical capacity and appropriate and safe Li-insertion potential.However,SiO experiences a large volume change during the electrochemical reaction,low Li diffusivity,and low electron conductivity,resulting in degradation and low rate capability for LIBs.Here,we report on the rapid crafting of SiO–Sn_(2)Fe@C composites via a one-step plasma milling process,leading to an alloy of Sn and Fe and in turn refining SiO and Sn_(2)Fe into nanoparticles that are well dispersed in a nanosized,few-layer graphene matrix.The Sn and Fe nanoparticles generated during the first Li-insertion process form a stable network to improve Li diffusivity and electron conductivity.As an anode mate-rial,the SiO–Sn_(2)Fe@C composite manifests high reversible capacities,superior cycling stability,and excellent rate capability.The capacity retention is found to be as high as 95%and 84%at the 100th and 300th cycles under 0.3 C.During rate capability testing at 3,6,and 11 C,the capacity retentions are 71%,60%,and 50%,respectively.This study highlights that this simple,one-step plasma milling strategy can further improve SiO-based anode materials for high-performance LIBs. 展开更多
关键词 SiO based Sn_(2)Fe Lithium-ion batteries Anodes fast-charging
原文传递
Progress in niobium-based oxides as anode for fast-charging Li-ion batteries 被引量:1
10
作者 Fuqiang Xie Junling Xu +7 位作者 Qizhong Liao Qingqing Zhang Binyun Liu Lianyi Shao Junjie Cai Xiaoyan Shi Zhipeng Sun Ching-Ping Wong 《Energy Reviews》 2023年第2期62-79,共18页
With the increasing popularity of electric/hybrid vehicles and the rapid development of 3C electronics,there is a growing interest in high-rate energy storage systems.The rapid development and widespread adoption of l... With the increasing popularity of electric/hybrid vehicles and the rapid development of 3C electronics,there is a growing interest in high-rate energy storage systems.The rapid development and widespread adoption of lithiumion batteries(LIBs)can be attributed to their numerous advantages,including high energy density,high operating voltage,environmental friendliness,and lack of memory effect.However,the progress of LIBs is currently hindered by the limitations of energy storage materials,which serve as vital components.Therefore,there is an urgent need to address the development of a new generation of high-rate energy storage materials in order to overcome these limitations and further advance LIB technology.Niobium-based oxides have emerged as promising candidates for the fabrication of fast-charging Li-ion batteries due to their excellent rate capability and long lifespan.This review paper provides a comprehensive analysis of the fundamentals,methodologies,and electrochemistries of niobium-based oxides,with a specific focus on the evolution and creation of crystal phases of Nb_(2)O_(5),fundamental electrochemical behavior,and modification methods including morphology modulation,composite technology,and carbon coating.Furthermore,the review explores Nb_(2)O_(5)-derived compounds and related advanced characterization techniques.Finally,the challenges and issues in the development of niobiumbased oxides for high-rate energy storage batteries are discussed,along with future research perspectives. 展开更多
关键词 Energy storage materials fast-charging Li-ion batteries Niobium-based oxides Modification Nb_(2)O_(5)-Derived compounds Advanced characterization techniques
下载PDF
Mechanoadaptive morphing gel electrolyte enables flexible and fast-charging Zn-ion batteries with outstanding dendrite suppression performance 被引量:4
11
作者 Faqing Cao Baohu Wu +3 位作者 Tianyu Li Shengtong Sun Yucong Jiao Peiyi Wu 《Nano Research》 SCIE EI CSCD 2022年第3期2030-2039,共10页
The safe,flexible,and environment-friendly Zn-ion batteries have aroused great interests nowadays.Nevertheless,flagrant Zn dendrite uncontrollably grows in liquid electrolytes due to insufficient surface protection,wh... The safe,flexible,and environment-friendly Zn-ion batteries have aroused great interests nowadays.Nevertheless,flagrant Zn dendrite uncontrollably grows in liquid electrolytes due to insufficient surface protection,which severely impedes the future applications of Zn-ion batteries especially at high current densities.Gel electrolytes are emerging to tackle this issue,yet the required high modulus for inhibiting dendrite growth as well as concurrent poor interfacial contact with roughened Zn electrodes are not easily reconcilable to regulate the fragile Zn/Zn^(2+) interface.Here we demonstrate,such a conflict may be defeated by using a mechanoadaptive cellulose nanofibril-based morphing gel electrolyte(MorphGE),which synergizes bulk compliance for optimizing interfacial contact as well as high modulus for suppressing dendrite formation.Moreover,by anchoring desolvated Zn^(2+) on cellulose nanofibrils,the side reactions which induce dendrite formation are also significantly reduced.As a result,the MorphGE-based symmetrical Zn-ion battery demonstrated outstanding stability for more than 100 h at the high current density of 10 mA·cm^(−2) and areal capacity of 10 mA·h·cm^(−2),and the corresponding Zn-ion battery delivered a prominent specific capacity of 100 mA·h·g^(−1) for more than 500 cycles at 20 C.The present example of engineering the mechanoadaptivity of gel electrolytes will shed light on a new pathway for designing highly safe and flexible energy storage devices. 展开更多
关键词 Zn-ion batteries dendrite growth interfacial adaptivity gel electrolytes fast-charging
原文传递
Identifying rate limitation and a guide to design of fast-charging Li-ion battery 被引量:6
12
作者 Sheng S.Zhang 《InfoMat》 SCIE CAS 2020年第5期942-949,共8页
Fast-charging is highly demanded for applications requiring short charging time.However,fast-charging triggers serious problems,leading to decline in charge acceptance and energy efficiency,accelerated capacity degrad... Fast-charging is highly demanded for applications requiring short charging time.However,fast-charging triggers serious problems,leading to decline in charge acceptance and energy efficiency,accelerated capacity degradation,and safety risk.In this work,a three-electrode coin cell with a Li metal reference electrode is designed to individually record the potential of two electrodes,and measure the impedance of each electrode by using a power-optimized graphite-LiNi0.80Co0.15Al0.05O2 electrode couple.It is shown that regardless of the state-of-charge the Li-ion cell's impedance is contributed predominantly by the cathode,and that the cathode's impedance is dominated by the charge-transfer resistance.In consistence with the impedance results,polarization of the Li-ion cell is dominated by the cathode.It is surprised to find that no Li plating occurs on the graphite anode even if the charging rate is increased to 10 C(1 C=1.30 mA cm^−2).The results of this work indicate that low overall impedance with a high cathode-to-anode impedance ratio is the key to enabling safe fast-charging,and that fast-charging Li-ion batteries without Li plating on the graphite anode is possible if the cathode and graphite anode are optimistically engineered. 展开更多
关键词 charge-transfer resistance fast-charging IMPEDANCE Li plating POLARIZATION
原文传递
Fast-chargingand dendrite-free lithiummetal anodeeenabledby partial lithiation ofgraphene aerogel 被引量:3
13
作者 Yong Ma Yuting Gu +8 位作者 Ying He Le Wei Yuebin Lian Weiyi Pan Xinjian Li Yanhui Su Yang Peng Zhao Deng Zhongfan Liu 《Nano Research》 SCIE EI CSCD 2022年第11期9792-9799,共8页
The development of deeply cyclable lithium metal batteries with fast-charging capability offers a promising solution to relieve the“range anxiety”in driving electric vehicles.Conventional lithium metal anodes suffer... The development of deeply cyclable lithium metal batteries with fast-charging capability offers a promising solution to relieve the“range anxiety”in driving electric vehicles.Conventional lithium metal anodes suffered from low operating current densities and shallow charge/discharge depths,owing to the intrinsic dendrite growth governed by Sand’s law.Herein,we come up with a novel design of heavy-duty lithium metal anode fabricated by partially infusing the three-dimensional(3D)porous graphene aerogel with molten Li.Both electroanalytical measurements and simulations show that the unique electrode architecture brings notable advantages in mediating smooth Li plating/stripping,including reduced local current density,inhibited dendrite growth,buffered volume fluctuation,as well as more efficient Li utilization.Consequently,a remarkable cycling performance in symmetric cells for over 400 cycles(800 h)with an ultrahigh cycling capacity of 15 mAh·cm^(−2) at 15 mA·cm^(−2) is achieved,which,to our best knowledge,has been never seen in literature.LiFePO4 full cells demonstrate a superb rate capability up to 10 C and a prolonged cycling of 1,600 cycles at 2 C with the per-cycle capacity decay of only 0.023%.This study paves the way for the ultimate deployment of lithium metal batteries in real-world applications that require fast charging and deep cycling. 展开更多
关键词 graphene aerogel partial infusion fast-charging dendrite-free Li metal anodes
原文传递
Inorganic-organic Hybrid Cathodes for Fast-charging and Long-cycling Zinc-ion Batteries
14
作者 QIU Zi-Wei FU Yu-Ru +2 位作者 CHEN Ming ZHAO Jun-Mei SUN Chuan-Fu 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2021年第11期1535-1540,1410,共7页
Here we report the utilization of inorganic-organic hybrid(IOH)as a new type of cathode material for aqueous Zn-ion batteries.The IOH possessing a unique lattice-water-rich layered structure achieves high long-term cy... Here we report the utilization of inorganic-organic hybrid(IOH)as a new type of cathode material for aqueous Zn-ion batteries.The IOH possessing a unique lattice-water-rich layered structure achieves high long-term cycling stability(81.5%capacity retention over 1500 cycles)and ultrafast charging capability(~90%state of charge about 1 minute). 展开更多
关键词 zinc-ion batteries inorganic-organic hybrid fast-charging CATHODE
原文传递
Pioneering the direct large-scale laser printing of flexible“graphenic silicon”self-standing thin films as ultrahigh-performance lithium-ion battery anodes
15
作者 Avinash Kothuru Adam Cohen +2 位作者 Gil Daffan Yonatan Juhl Fernando Patolsky 《Carbon Energy》 SCIE EI CAS CSCD 2024年第7期26-40,共15页
Recent technological advancements,such as portable electronics and electric vehicles,have created a pressing need for more efficient energy storage solutions.Lithium-ion batteries(LIBs)have been the preferred choice f... Recent technological advancements,such as portable electronics and electric vehicles,have created a pressing need for more efficient energy storage solutions.Lithium-ion batteries(LIBs)have been the preferred choice for these applications,with graphite being the standard anode material due to its stability.However,graphite falls short of meeting the growing demand for higher energy density,possessing a theoretical capacity that lags behind.To address this,researchers are actively seeking alternative materials to replace graphite in commercial batteries.One promising avenue involves lithiumalloying materials like silicon and phosphorus,which offer high theoretical capacities.Carbon-silicon composites have emerged as a viable option,showing improved capacity and performance over traditional graphite or pure silicon anodes.Yet,the existing methods for synthesizing these composites remain complex,energy-intensive,and costly,preventing widespread adoption.A groundbreaking approach is presented here:the use of a laser writing strategy to rapidly transform common organic carbon precursors and silicon blends into efficient“graphenic silicon”composite thin films.These films exhibit exceptional structural and energy storage properties.The resulting three-dimensional porous composite anodes showcase impressive attributes,including ultrahigh silicon content,remarkable cyclic stability(over 4500 cycles with∼40%retention),rapid charging rates(up to 10 A g^(-1)),substantial areal capacity(>5.1 mAh cm^(-2)),and excellent gravimetric capacity(>2400 mAh g^(-1) at 0.2 A g^(-1)).This strategy marks a significant step toward the scalable production of high-performance LIB materials.Leveraging widely available,cost-effective precursors,the laser-printed“graphenic silicon”composites demonstrate unparalleled performance,potentially streamlining anode production while maintaining exceptional capabilities.This innovation not only paves the way for advanced LIBs but also sets a precedent for transforming various materials into high-performing electrodes,promising reduced complexity and cost in battery production. 展开更多
关键词 4D printing energy storage fast-charging laser-induced graphene LITHIUM-ION silicon carbon composite anodes
下载PDF
Macroporous Directed and Interconnected Carbon Architectures Endow Amorphous Silicon Nanodots as Low‑Strain and Fast‑Charging Anode for Lithium‑Ion Batteries
16
作者 Zhenwei Li Meisheng Han +2 位作者 Peilun Yu Junsheng Lin Jie Yu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期333-351,共19页
Fabricating low-strain and fast-charging silicon-carbon composite anodes is highly desired but remains a huge challenge for lithium-ion batteries.Herein,we report a unique silicon-carbon composite fabricated by unifor... Fabricating low-strain and fast-charging silicon-carbon composite anodes is highly desired but remains a huge challenge for lithium-ion batteries.Herein,we report a unique silicon-carbon composite fabricated by uniformly dis-persing amorphous Si nanodots(SiNDs)in carbon nanospheres(SiNDs/C)that are welded on the wall of the macroporous carbon framework(MPCF)by vertical graphene(VG),labeled as MPCF@VG@SiNDs/C.The high dispersity and amor-phous features of ultrasmall SiNDs(~0.7 nm),the flexible and directed electron/Li+transport channels of VG,and the MPCF impart the MPCF@VG@SiNDs/C more lithium storage sites,rapid Li+transport path,and unique low-strain property during Li+storage.Consequently,the MPCF@VG@SiNDs/C exhibits high cycle stability(1301.4 mAh g^(-1) at 1 A g^(-1) after 1000 cycles without apparent decay)and high rate capacity(910.3 mAh g^(-1),20 A g^(-1))in half cells based on industrial electrode standards.The assembled pouch full cell delivers a high energy density(1694.0 Wh L^(-1);602.8 Wh kg^(-1))and an excellent fast-charging capability(498.5 Wh kg^(-1),charging for 16.8 min at 3 C).This study opens new possibilities for preparing advanced silicon-carbon com-posite anodes for practical applications. 展开更多
关键词 Amorphous Si nanodots Low-strain fast-charging Lithium-ion batteries
下载PDF
Suppressing dendritic metallic Li formation on graphite anode under battery fast charging
17
作者 Shiyu Liu Baoqi Gu +4 位作者 Zihe Chen Renming Zhan Xiancheng Wang Ruikang Feng Yongming Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期484-500,共17页
Lithium-ion batteries(LIBs)with fast-charging capability are essential for enhancing consumer experience and accelerating the global market adoption of electric vehicles.However,achieving fast-charging capability with... Lithium-ion batteries(LIBs)with fast-charging capability are essential for enhancing consumer experience and accelerating the global market adoption of electric vehicles.However,achieving fast-charging capability without compromising energy density,cycling lifespan,and safety of LIBs remains a significant challenge due to the formation of dendritic Li metal on graphite anode under fast charging condition.In view of this,the fundamentals for the dendritic metallic Li formation and the strategies for suppressing metallic Li plating based on analyzing the entire Li^(+)transport pathway at the anode including electrolyte,pore structure of electrode,and surface and bulk of materials are summarized and discussed in this review.Besides,we highlight the importance of designing thick electrodes with fast Li^(+)transport kinetics and comprehensively understanding the interaction between solid electrolyte interphase(SEI)and Li^(+)migration in order to avoid the formation of dendritic Li metal in practical fast-charging batteries.Finally,the regulation of Li metal plating with plane morphology,instead of dendritic structure,on the surface of graphite electrode under fast-charging condition is analyzed as a future direction to achieve higher energy density of batteries without safety concerns. 展开更多
关键词 Safety fast-charging lithium-ion batteries Dendritic metallic lithium Li^(+) transport
下载PDF
Kinetic Limits of Graphite Anode for Fast‑Charging Lithium‑Ion Batteries 被引量:4
18
作者 Suting Weng Gaojing Yang +9 位作者 Simeng Zhang Xiaozhi Liu Xiao Zhang Zepeng Liu Mengyan Cao Mehmet Nurullah Ateş Yejing Li Liquan Chen Zhaoxiang Wang Xuefeng Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第11期518-529,共12页
Fast-charging lithium-ion batteries are highly required,especially in reducing the mileage anxiety of the widespread electric vehicles.One of the biggest bottlenecks lies in the sluggish kinetics of the Li^(+)intercal... Fast-charging lithium-ion batteries are highly required,especially in reducing the mileage anxiety of the widespread electric vehicles.One of the biggest bottlenecks lies in the sluggish kinetics of the Li^(+)intercalation into the graphite anode;slow intercalation will lead to lithium metal plating,severe side reactions,and safety concerns.The premise to solve these problems is to fully understand the reaction pathways and rate-determining steps of graphite during fast Li^(+)intercalation.Herein,we compare the Li^(+)diffusion through the graphite particle,interface,and electrode,uncover the structure of the lithiated graphite at high current densities,and correlate them with the reaction kinetics and electrochemical performances.It is found that the rate-determining steps are highly dependent on the particle size,interphase property,and electrode configuration.Insufficient Li^(+)diffusion leads to high polarization,incomplete intercalation,and the coexistence of several staging structures.Interfacial Li^(+)diffusion and electrode transportation are the main rate-determining steps if the particle size is less than 10μm.The former is highly dependent on the electrolyte chemistry and can be enhanced by constructing a fluorinated interphase.Our findings enrich the understanding of the graphite structural evolution during rapid Li^(+)intercalation,decipher the bottleneck for the sluggish reaction kinetics,and provide strategic guidelines to boost the fast-charging performance of graphite anode. 展开更多
关键词 fast-charging Graphite anode Cryogenic transmission electron microscopy(cryo-TEM) High-rate kinetics
下载PDF
Investigation of multi-step fast charging protocol and aging mechanism for commercial NMC/graphite lithium-ion batteries 被引量:2
19
作者 Yaqi Li Jia Guo +2 位作者 Kjeld Pedersen Leonid Gurevich Daniel-Ioan Stroe 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期237-246,I0006,共11页
Fast charging is considered a promising protocol for raising the charging efficiency of electric vehicles.However,high currents applied to Lithium-ion(Li-ion)batteries inevitably accelerate the degradation and shorten... Fast charging is considered a promising protocol for raising the charging efficiency of electric vehicles.However,high currents applied to Lithium-ion(Li-ion)batteries inevitably accelerate the degradation and shorten their lifetime.This work designs a multi-step fast-charging method to extend the lifetime of LiNi0.5Co0.2Mn0.3O2(NMC)/graphite Li-ion batteries based on the studies of half cells and investigates the aging mechanisms for different charging methods.The degradation has been studied from both full cell behaviour and materials perspectives through a combination of non-destructive diagnostic methods and post-mortem analysis.In the proposed multi-step charging protocol,the state-of-charge(SOC)profile is subdivided into five ranges,and the charging current is set differently for different SOC ranges.One of the designed multi-step fast charging protocols is shown to allow for a 200 full equivalent cycles longer lifetime as compared to the standard charging method,while the charging time is reduced by 20%.From the incremental capacity analysis and electrical impedance spectroscopy,the loss of active materials and lithium inventory on the electrodes,as well as an increase in internal resistance for the designed multistep constant-current-constant-voltage(MCCCV)protocol have been found to be significantly lower than for the standard charging method.Post-mortem analysis shows that cells aged by the designed MCCCV fast charging protocol exhibit less graphite exfoliation and crystallization damage,as well as a reduced solid electrolyte interphase(SEI)layer growth on the anode,leading to a lower Rseiresistance and extended lifetime. 展开更多
关键词 fast-charging Lithium-ion battery Aging mechanism ELECTRODE
下载PDF
Monolayer MoS_(2)Fabricated by In Situ Construction of Interlayer Electrostatic Repulsion Enables Ultrafast Ion Transport in Lithium-Ion Batteries 被引量:2
20
作者 Meisheng Han Yongbiao Mu +3 位作者 Jincong Guo Lei Wei Lin Zeng Tianshou Zhao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第6期126-142,共17页
High theoretical capacity and unique layered structures make MoS_(2)a promising lithium-ion battery anode material.However,the anisotropic ion transport in layered structures and the poor intrinsic conductivity of MoS... High theoretical capacity and unique layered structures make MoS_(2)a promising lithium-ion battery anode material.However,the anisotropic ion transport in layered structures and the poor intrinsic conductivity of MoS_(2)lead to unacceptable ion transport capability.Here,we propose in-situ construction of interlayer electrostatic repulsion caused by Co^(2+)substituting Mo^(4+)between MoS_(2)layers,which can break the limitation of interlayer van der Waals forces to fabricate monolayer MoS_(2),thus establishing isotropic ion transport paths.Simultaneously,the doped Co atoms change the electronic structure of monolayer MoS_(2),thus improving its intrinsic conductivity.Importantly,the doped Co atoms can be converted into Co nanoparticles to create a space charge region to accelerate ion transport.Hence,the Co-doped monolayer MoS_(2)shows ultrafast lithium ion transport capability in half/full cells.This work presents a novel route for the preparation of monolayer MoS_(2)and demonstrates its potential for application in fast-charging lithium-ion batteries. 展开更多
关键词 Monolayer MoS_(2) Interlayer electrostatic repulsion Co atoms doping Surface-capacitance effect fast-charging lithiumion batteries
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部