期刊文献+
共找到199篇文章
< 1 2 10 >
每页显示 20 50 100
Intelligent Detection Model Based on a Fully Convolutional Neural Network for Pavement Cracks 被引量:2
1
作者 Duo Ma Hongyuan Fang +3 位作者 Binghan Xue Fuming Wang Mohammed AMsekh Chiu Ling Chan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第6期1267-1291,共25页
The crack is a common pavement failure problem.A lack of periodic maintenance will result in extending the cracks and damage the pavement,which will affect the normal use of the road.Therefore,it is significant to est... The crack is a common pavement failure problem.A lack of periodic maintenance will result in extending the cracks and damage the pavement,which will affect the normal use of the road.Therefore,it is significant to establish an efficient intelligent identification model for pavement cracks.The neural network is a method of simulating animal nervous systems using gradient descent to predict results by learning a weight matrix.It has been widely used in geotechnical engineering,computer vision,medicine,and other fields.However,there are three major problems in the application of neural networks to crack identification.There are too few layers,extracted crack features are not complete,and the method lacks the efficiency to calculate the whole picture.In this study,a fully convolutional neural network based on ResNet-101 is used to establish an intelligent identification model of pavement crack regions.This method,using a convolutional layer instead of a fully connected layer,realizes full convolution and accelerates calculation.The region proposals come from the feature map at the end of the base network,which avoids multiple computations of the same picture.Online hard example mining and data-augmentation techniques are adopted to improve the model’s recognition accuracy.We trained and tested Concrete Crack Images for Classification(CCIC),which is a public dataset collected using smartphones,and the Crack Image Database(CIDB),which was automatically collected using vehicle-mounted charge-coupled device cameras,with identification accuracy reaching 91.4%and 86.4%,respectively.The proposed model has a higher recognition accuracy and recall rate than Faster RCNN and different depth models,and can extract more complete and accurate crack features in CIDB.We also analyzed translation processing,fuzzy,scaling,and distorted images.The proposed model shows a strong robustness and stability,and can automatically identify image cracks of different forms.It has broad application prospects in practical engineering problems. 展开更多
关键词 fully convolutional neural network pavement crack intelligent detection crack image database
下载PDF
Prediction of Uncertainty Estimation and Confidence Calibration Using Fully Convolutional Neural Network
2
作者 Karim Gasmi Lassaad Ben Ammar +1 位作者 Hmoud Elshammari Fadwa Yahya 《Computers, Materials & Continua》 SCIE EI 2023年第5期2557-2573,共17页
Convolution neural networks(CNNs)have proven to be effective clinical imagingmethods.This study highlighted some of the key issues within these systems.It is difficult to train these systems in a limited clinical imag... Convolution neural networks(CNNs)have proven to be effective clinical imagingmethods.This study highlighted some of the key issues within these systems.It is difficult to train these systems in a limited clinical image databases,and many publications present strategies including such learning algorithm.Furthermore,these patterns are known formaking a highly reliable prognosis.In addition,normalization of volume and losses of dice have been used effectively to accelerate and stabilize the training.Furthermore,these systems are improperly regulated,resulting in more confident ratings for correct and incorrect classification,which are inaccurate and difficult to understand.This study examines the risk assessment of Fully Convolutional Neural Networks(FCNNs)for clinical image segmentation.Essential contributions have been made to this planned work:1)dice loss and cross-entropy loss are compared on the basis of segment quality and uncertain assessment of FCNNs;2)proposal for a group model for assurance measurement of full convolutional neural networks trained with dice loss and group normalization;And 3)the ability of the measured FCNs to evaluate the segment quality of the structures and to identify test examples outside the distribution.To evaluate the study’s contributions,it conducted a series of tests in three clinical image division applications such as heart,brain and prostate.The findings of the study provide significant insights into the predictive ambiguity assessment and a practical strategies for outside-distribution identification and reliable measurement in the clinical image segmentation.The approaches presented in this research significantly enhance the reliability and accuracy rating of CNNbased clinical imaging methods. 展开更多
关键词 Medical image SEGMENTATION confidence calibration uncertainty estimation fully convolutional neural network
下载PDF
Reconstructing the 3D digital core with a fully convolutional neural network
3
作者 Li Qiong Chen Zheng +4 位作者 He Jian-Jun Hao Si-Yu Wang Rui Yang Hao-Tao Sun Hua-Jun 《Applied Geophysics》 SCIE CSCD 2020年第3期401-410,共10页
In this paper, the complete process of constructing 3D digital core by fullconvolutional neural network is described carefully. A large number of sandstone computedtomography (CT) images are used as training input for... In this paper, the complete process of constructing 3D digital core by fullconvolutional neural network is described carefully. A large number of sandstone computedtomography (CT) images are used as training input for a fully convolutional neural networkmodel. This model is used to reconstruct the three-dimensional (3D) digital core of Bereasandstone based on a small number of CT images. The Hamming distance together with theMinkowski functions for porosity, average volume specifi c surface area, average curvature,and connectivity of both the real core and the digital reconstruction are used to evaluate theaccuracy of the proposed method. The results show that the reconstruction achieved relativeerrors of 6.26%, 1.40%, 6.06%, and 4.91% for the four Minkowski functions and a Hammingdistance of 0.04479. This demonstrates that the proposed method can not only reconstructthe physical properties of real sandstone but can also restore the real characteristics of poredistribution in sandstone, is the ability to which is a new way to characterize the internalmicrostructure of rocks. 展开更多
关键词 fully convolutional neural network 3D digital core numerical simulation training set
下载PDF
Automated Delineation of Smallholder Farm Fields Using Fully Convolutional Networks and Generative Adversarial Networks 被引量:2
4
作者 Qiuyu YAN Wufan ZHAO +1 位作者 Xiao HUANG Xianwei LYU 《Journal of Geodesy and Geoinformation Science》 2022年第4期10-22,共13页
Accurate boundaries of smallholder farm fields are important and indispensable geo-information that benefits farmers,managers,and policymakers in terms of better managing and utilizing their agricultural resources.Due... Accurate boundaries of smallholder farm fields are important and indispensable geo-information that benefits farmers,managers,and policymakers in terms of better managing and utilizing their agricultural resources.Due to their small size,irregular shape,and the use of mixed-cropping techniques,the farm fields of smallholder can be difficult to delineate automatically.In recent years,numerous studies on field contour extraction using a deep Convolutional Neural Network(CNN)have been proposed.However,there is a relative shortage of labeled data for filed boundaries,thus affecting the training effect of CNN.Traditional methods mostly use image flipping,and random rotation for data augmentation.In this paper,we propose to apply Generative Adversarial Network(GAN)for the data augmentation of farm fields label to increase the diversity of samples.Specifically,we propose an automated method featured by Fully Convolutional Neural networks(FCN)in combination with GAN to improve the delineation accuracy of smallholder farms from Very High Resolution(VHR)images.We first investigate four State-Of-The-Art(SOTA)FCN architectures,i.e.,U-Net,PSPNet,SegNet and OCRNet,to find the optimal architecture in the contour detection task of smallholder farm fields.Second,we apply the identified optimal FCN architecture in combination with Contour GAN and pixel2pixel GAN to improve the accuracy of contour detection.We test our method on the study area in the Sudano-Sahelian savanna region of northern Nigeria.The best combination achieved F1 scores of 0.686 on Test Set 1(TS1),0.684 on Test Set 2(TS2),and 0.691 on Test Set 3(TS3).Results indicate that our architecture adapts to a variety of advanced networks and proves its effectiveness in this task.The conceptual,theoretical,and experimental knowledge from this study is expected to seed many GAN-based farm delineation methods in the future. 展开更多
关键词 field boundary contour detection fully convolutional neural networks generative adversarial networks
下载PDF
A Method to Extract Task-Related EEG Feature Based on Lightweight Convolutional Neural Network
5
作者 Qi Huang Jing Ding Xin Wang 《Neuroscience Bulletin》 CSCD 2024年第12期1915-1930,共16页
Unlocking task-related EEG spectra is crucial for neuroscience.Traditional convolutional neural networks(CNNs)effectively extract these features but face limitations like overfitting due to small datasets.To address t... Unlocking task-related EEG spectra is crucial for neuroscience.Traditional convolutional neural networks(CNNs)effectively extract these features but face limitations like overfitting due to small datasets.To address this issue,we propose a lightweight CNN and assess its interpretability through the fully connected layer(FCL).Initially tested with two tasks(Task 1:open vs closed eyes,Task 2:interictal vs ictal stage),the CNN demonstrated enhanced spectral features in the alpha band for Task 1 and the theta band for Task 2,aligning with established neurophysiological characteristics.Subsequent experiments on two brain-computer interface tasks revealed a correlation between delta activity(around 1.55 Hz)and hand movement,with consistent results across pericentral electroencephalogram(EEG)channels.Compared to recent research,our method stands out by delivering task-related spectral features through FCL,resulting in significantly fewer trainable parameters while maintaining comparable interpretability.This indicates its potential suitability for a wider array of EEG decoding scenarios. 展开更多
关键词 convolutional neural network fully connected layer INTELLIGIBILITY ELECTROENCEPHALOGRAM
原文传递
基于PCA-LDA和RIC-CNN的旋转无关手写识别
6
作者 张墨逸 袁小芳 +1 位作者 张彬 陈海燕 《计算机技术与发展》 2025年第4期93-99,共7页
旋转无关手写字符识别对提高手写识别系统的实际应用准确性和鲁棒性至关重要。针对旋转字符识别准确率低、旋转不变坐标卷积神经网络(RIC-CNN)模型耗时长的问题,提出一种新的旋转无关手写字符识别方法。首先,在原RIC-CNN模型中引入非分... 旋转无关手写字符识别对提高手写识别系统的实际应用准确性和鲁棒性至关重要。针对旋转字符识别准确率低、旋转不变坐标卷积神经网络(RIC-CNN)模型耗时长的问题,提出一种新的旋转无关手写字符识别方法。首先,在原RIC-CNN模型中引入非分离旋转矩不变量方法,并创建特征提取层,提取旋转不变数据特征,解决数据提取不充分的问题。接着,应用基于正交投影的PCA-LDA算法,该算法通过引入随机矩阵对特征进行正交投影,并将主成分分析(PCA)和线性判别分析(LDA)进行结合构建协方差矩阵和散射矩阵,从特征中筛选出有效的旋转不变特征,提高识别精度。最后,采用全连接神经网络(FCNN)对提取的特征进行分类识别。实验在空中手写数据集、MNIST数据集、中科院数据集与哈工大数据集上进行了验证。结果表明,该方法显著提升了旋转手写字符的识别精度,其中数字旋转数据的准确率达到了97.72%。以MNIST数据集为例,该方法识别字符的时间仅为14.16秒,相比单独使用RIC-CNN模型,时间成本减少了19.66秒,充分证明了该方法的有效性。 展开更多
关键词 手写字符识别 非分离旋转矩不变量 旋转不变坐标卷积神经网络 正交投影 主成分分析 线性判别分析 全连接神经网络
下载PDF
How to accurately extract large-scale urban land?Establishment of an improved fully convolutional neural network model
7
作者 Boling YIN Dongjie GUAN +4 位作者 Yuxiang ZHANG He XIAO Lidan CHENG Jiameng CAO Xiangyuan SU 《Frontiers of Earth Science》 SCIE CSCD 2022年第4期1061-1076,共16页
Realizing accurate perception of urban boundary changes is conducive to the formulation of regional development planning and researches of urban sustainable development.In this paper,an improved fully convolution neur... Realizing accurate perception of urban boundary changes is conducive to the formulation of regional development planning and researches of urban sustainable development.In this paper,an improved fully convolution neural network was provided for perceiving large-scale urban change,by modifying network structure and updating network strategy to extract richer feature information,and to meet the requirement of urban construction land extraction under the background of large-scale low-resolution image.This paper takes the Yangtze River Economic Belt of China as an empirical object to verify the practicability of the network,the results show the extraction results of the improved fully convolutional neural network model reached a precision of kappa coefficient of 0.88,which is better than traditional fully convolutional neural networks,it performs well in the construction land extraction at the scale of small and medium-sized cities. 展开更多
关键词 improved fully convolutional neural network remote sensing image classification city boundary precision evaluation
原文传递
全卷积定位神经网络在两个地震相互干扰情形下的应用
8
作者 陈慧慧 张雄 +1 位作者 田宵 张伟 《地球物理学报》 北大核心 2025年第1期139-152,共14页
台站连续记录的弱余震或微震数据中经常会遇到两个地震发生的时间比较接近,波形存在互相干扰的情况,给震相拾取和关联等处理造成困难,进而影响地震定位结果.近年来,人们开始探索使用深度学习方法直接从波形数据中定位地震,但鲜有对两个... 台站连续记录的弱余震或微震数据中经常会遇到两个地震发生的时间比较接近,波形存在互相干扰的情况,给震相拾取和关联等处理造成困难,进而影响地震定位结果.近年来,人们开始探索使用深度学习方法直接从波形数据中定位地震,但鲜有对两个波形相互干扰的地震进行定位的情况.本研究基于全卷积神经网络模型,采用叠加两个高斯概率分布的方法,同时标记两个地震,使得同一时窗内存在两个波形相互干扰的地震事件时,神经网络能够同时定位两个地震事件.我们将该方法应用于美国南加州的Ridgecrest地震序列和样本,研究发现输入时窗只包含一个地震事件时,实际数据定位平均误差为2.8 km,当输出标签包含两个地震时,我们利用输出标签减去其中一个地震位置波峰的方法提取出两个地震的位置,估算出的干扰地震事件定位平均误差为7.9 km (定位范围89 km×72 km,包含了位置提取方法的误差).测试表明,该方法对两个波形相互干扰的地震进行定位具有一定的效果,对多事件相互干扰的定位研究具有一定启发意义,从而进一步提高地震监测的完备性. 展开更多
关键词 地震定位 相互干扰 全卷积神经网络
下载PDF
FM-FCN:A Neural Network with Filtering Modules for Accurate Vital Signs Extraction
9
作者 Fangfang Zhu Qichao Niu +3 位作者 Xiang Li Qi Zhao Honghong Su Jianwei Shuai 《Research》 2025年第1期92-106,共15页
Neural networks excel at capturing local spatial patterns through convolutional modules,but they may struggle to identify and effectively utilize the morphological and amplitude periodic nature of physiological signal... Neural networks excel at capturing local spatial patterns through convolutional modules,but they may struggle to identify and effectively utilize the morphological and amplitude periodic nature of physiological signals.In this work,we propose a novel network named filtering module fully convolutional network(FM-FCN),which fuses traditional filtering techniques with neural networks to amplify physiological signals and suppress noise.First,instead of using a fully connected layer,we use an FCN to preserve the time-dimensional correlation information of physiological signals,enabling multiple cycles of signals in the network and providing a basis for signal processing.Second,we introduce the FM as a network module that adapts to eliminate unwanted interference,leveraging the structure of the filter.This approach builds a bridge between deep learning and signal processing methodologies.Finally,we evaluate the performance of FM-FCN using remote photoplethysmography.Experimental results demonstrate that FM-FCN outperforms the second-ranked method in terms of both blood volume pulse(BVP)signal and heart rate(HR)accuracy.It substantially improves the quality of BVP waveform reconstruction,with a decrease of 20.23%in mean absolute error(MAE)and an increase of 79.95%in signal-to-noise ratio(SNR).Regarding HR estimation accuracy,FM-FCN achieves a decrease of 35.85%in MAE,29.65%in error standard deviation,and 32.88%decrease in 95%limits of agreement width,meeting clinical standards for HR accuracy requirements.The results highlight its potential in improving the accuracy and reliability of vital sign measurement through high-quality BVP signal extraction.The codes and datasets are available online at https://github.com/zhaoqi106/FM-FCN. 展开更多
关键词 physiological signalsin filtering module fully convolutional network fm fcn which vital signs extraction amplify physiological signals convolutional modulesbut neural networks filtering module capturing local spatial patterns
原文传递
基于平行图像与深度学习的全预制装配式变电站框架结构缺陷识别方法
10
作者 夏凯 陈天佑 《微型电脑应用》 2025年第2期203-205,218,共4页
研究基于平行图像与深度学习的全预制装配式变电站框架结构缺陷识别方法,为变电站框架结构的维护修复提供准确的参考信息。依据平行图像运行模式构建变电站框架结构图像数据模型,并将图像数据模型作为卷积神经网络的输入;经卷积核卷积... 研究基于平行图像与深度学习的全预制装配式变电站框架结构缺陷识别方法,为变电站框架结构的维护修复提供准确的参考信息。依据平行图像运行模式构建变电站框架结构图像数据模型,并将图像数据模型作为卷积神经网络的输入;经卷积核卷积后提取特征,使用激活函数实现特征的映射;通过下采样层处理映射后特征,输出全新特征图;使用Softmax分类器实现全新特征图训练,获得变电站框架缺陷识别结果。实验结果表明,所提方法能够突出框架结构图像细节特征,准确识别出框架结构各个部位的缺陷特征,并且当卷积神经网络的卷积核大小为15时,识别效果最好,识别准确率达到96.5%以上。 展开更多
关键词 平行图像 深度学习 全预制装配式 框架结构 缺陷识别 卷积神经网络
下载PDF
基于GRU-1DFCN的硝化机搅拌系统故障诊断研究
11
作者 孙俪榕 孙琤 《工程建设与设计》 2025年第7期55-58,共4页
为提升涉火企业现场对硝化机等设备的维保效率,论文提出一种基于GRU-1DFCN的硝化机搅拌系统故障诊断方法。首先,采用GRU和1DFCN的并列式结构构建特征提取器;其次,采用Concat方法融合故障特征;最后,利用多分类算法Softmax实现对搅拌系统... 为提升涉火企业现场对硝化机等设备的维保效率,论文提出一种基于GRU-1DFCN的硝化机搅拌系统故障诊断方法。首先,采用GRU和1DFCN的并列式结构构建特征提取器;其次,采用Concat方法融合故障特征;最后,利用多分类算法Softmax实现对搅拌系统关键部件不同位置和不同故障类型的识别。故障诊断实例结果表明,论文模型在4种负载下的平均故障诊断准确率可以达到99.26%,相对于GRU、1DFCN、LSTM、CNN-LSTM、BP、SVM、KNN模型分别提高了0.57%、0.49%、3.5%、2.5%、16.14%、18.73%、19.31%,并且具有良好的泛化性和抗噪性能。 展开更多
关键词 故障诊断 门控循环单元 全卷积神经网络 硝化机搅拌系统
下载PDF
基于图像处理和机器学习的船体裂缝检测方法
12
作者 陈伟祥 王宇珩 +1 位作者 刘执方 孟祥睿 《工业控制计算机》 2025年第2期105-106,126,共3页
针对船舶裂缝检修行业存在的效率低下、维修周期长等问题,介绍了一种基于图像处理和机器学习技术的船体表面裂缝检测方法。该方法通过船体表面图像采集设备进行拍摄,并采用灰度变换、直方图均衡化和小波阈值方法进行预处理,提升图像对... 针对船舶裂缝检修行业存在的效率低下、维修周期长等问题,介绍了一种基于图像处理和机器学习技术的船体表面裂缝检测方法。该方法通过船体表面图像采集设备进行拍摄,并采用灰度变换、直方图均衡化和小波阈值方法进行预处理,提升图像对比度和纹理特征,同时抑制噪声干扰。随后,引入Faster-RCNN全卷积神经网络机器学习算法,实现裂缝区域的特征提取和分类识别。实验结果表明,该方法在裂缝识别准确率方面达到89.36%,具备自动化、高效率和准确性等优势,可有效提高船体维护和检修效率,为表面裂缝检测领域提供借鉴。 展开更多
关键词 裂缝检测 图像增强 小波阈值处理 图像处理 faster-rcnn全卷积神经网络
下载PDF
Automatic Detection of Lung Nodules Using 3D Deep Convolutional Neural Networks 被引量:2
13
作者 FU Ling MA Jingchen +2 位作者 CHEN Yizhi LARSSON Rasmus ZHAO Jun 《Journal of Shanghai Jiaotong university(Science)》 EI 2019年第4期517-523,共7页
Lung cancer is the leading cause of cancer deaths worldwide. Accurate early diagnosis is critical in increasing the 5-year survival rate of lung cancer, so the efficient and accurate detection of lung nodules,the pote... Lung cancer is the leading cause of cancer deaths worldwide. Accurate early diagnosis is critical in increasing the 5-year survival rate of lung cancer, so the efficient and accurate detection of lung nodules,the potential precursors to lung cancer, is paramount. In this paper, a computer-aided lung nodule detection system using 3D deep convolutional neural networks(CNNs) is developed. The first multi-scale 11-layer 3D fully convolutional neural network(FCN) is used for screening all lung nodule candidates. Considering relative small sizes of lung nodules and limited memory, the input of the FCN consists of 3D image patches rather than of whole images. The candidates are further classified in the second CNN to get the final result. The proposed method achieves high performance in the LUNA16 challenge and demonstrates the effectiveness of using 3D deep CNNs for lung nodule detection. 展开更多
关键词 LUNG NODULE DETECTION COMPUTER-AIDED DETECTION (CAD) convolutional neural network (CNN) fully convolutional neural network (FCN)
原文传递
Marine aquaculture mapping using GF-1 WFV satellite images and full resolution cascade convolutional neural network 被引量:1
14
作者 Yongyong Fu Shucheng You +6 位作者 Shujuan Zhang Kun Cao Jianhua Zhang Ping Wang Xu Bi Feng Gao Fangzhou Li 《International Journal of Digital Earth》 SCIE EI 2022年第1期2047-2060,共14页
Growing demand for seafood and reduced fishery harvests have raised intensive farming of marine aquaculture in coastal regions,which may cause severe coastal water problems without adequate environmental management.Ef... Growing demand for seafood and reduced fishery harvests have raised intensive farming of marine aquaculture in coastal regions,which may cause severe coastal water problems without adequate environmental management.Effective mapping of mariculture areas is essential for the protection of coastal environments.However,due to the limited spatial coverage and complex structures,it is still challenging for traditional methods to accurately extract mariculture areas from medium spatial resolution(MSR)images.To solve this problem,we propose to use the full resolution cascade convolutional neural network(FRCNet),which maintains effective features over the whole training process,to identify mariculture areas from MSR images.Specifically,the FRCNet uses a sequential full resolution neural network as the first-level subnetwork,and gradually aggregates higher-level subnetworks in a cascade way.Meanwhile,we perform a repeated fusion strategy so that features can receive information from different subnetworks simultaneously,leading to rich and representative features.As a result,FRCNet can effectively recognize different kinds of mariculture areas from MSR images.Results show that FRCNet obtained better performance than other classical and recently proposed methods.Our developed methods can provide valuable datasets for large-scale and intelligent modeling of the marine aquaculture management and coastal zone planning. 展开更多
关键词 Mariculture areas GaoFen-1 wide-field-of-view images fully convolutional neural networks deep learning
原文传递
基于全卷积神经网络多任务学习的时域语音分离
15
作者 孙林慧 王春艳 张蒙 《信号处理》 CSCD 北大核心 2024年第12期2228-2237,共10页
基于深度神经网络时频掩码进行语音分离时,目标信号相位一般采用混合信号的相位谱,且对性别组合缺乏针对性处理,这导致分离语音的质量不佳。针对该问题,本文提出一种基于全卷积神经网络联合性别组合检测(Fully Convolutional Neural Net... 基于深度神经网络时频掩码进行语音分离时,目标信号相位一般采用混合信号的相位谱,且对性别组合缺乏针对性处理,这导致分离语音的质量不佳。针对该问题,本文提出一种基于全卷积神经网络联合性别组合检测(Fully Convolutional Neural Network-Gender Combination Detection,FCN-GCD)多任务学习的时域语音分离方法。该方法首先在语音分离支路构建全卷积神经网络,该网络的输入为时域两人混合语音信号,输出为目标讲话者的纯净语音信号,运用卷积编码器和反卷积解码器对特征进行压缩和重建,实现端到端的语音分离。其次将混合语音性别组合检测任务整合到语音分离网络中,在两个任务联合约束下获取辅助信息特征和语音分离特征,并将这些深度特征相结合来提升语音分离质量。该FCN-GCD方法是一种时域语音分离方法,不需要进行相位恢复和频域到时域的重构,相比频域处理方法,该处理过程简单,从而提高了运算效率。另外,该方法从混合语音性别组合检测任务中提取有效的辅助信息特征,利用联合特征实现了更有效的语音分离。实验结果表明,与单任务的语音分离方法相比,本文所提出的FCN-GCD方法在男男、女女和男女三种性别组合下均有效提高了语音质量,在语音质量感知评估(Perceptual Evaluation of Speech Quality,PESQ)、短时客观可懂度(Short-Time Objective Intelligibility,STOI)、信号干扰比(Signalto-Interference Ratio,SIR)、信号失真比(Signal-to-Distortion Ratio,SDR)和信号伪像比(Signal-to-Artifact Ratio,SAR)评价指标上均获得更佳的表现。 展开更多
关键词 深度神经网络 语音分离 全卷积神经网络 特征融合 多任务学习
下载PDF
基于改进DeepLabV3+的高分辨率遥感影像建筑物提取
16
作者 乔志勇 《地理空间信息》 2024年第12期69-73,共5页
针对管道传统的高后果区识别方式不但工作效率低,而且很难进行定量判断的问题。提出了一种基于改进Deep⁃LabV3+的遥感影像建筑物提取算法,采用基于全卷积神经网络识别算法,用于高分辨率遥感影像语义分割,以提取出兴趣区域(AOI)的像素点... 针对管道传统的高后果区识别方式不但工作效率低,而且很难进行定量判断的问题。提出了一种基于改进Deep⁃LabV3+的遥感影像建筑物提取算法,采用基于全卷积神经网络识别算法,用于高分辨率遥感影像语义分割,以提取出兴趣区域(AOI)的像素点,并采用形态学方法进行后处理,以获得最终的提取结果并应用于高后果区识别。实验结果表明:该文所提算法对高分辨率遥感影像中建筑物识别效果具有较大增强,且该算法也适用于油气管道高后果区的识别工作。此外还可结合其他数据以更精确地实现高后果区的识别。 展开更多
关键词 遥感影像识别 全卷积神经网络 建筑物识别 高后果区
下载PDF
基于深度全卷积神经弹性网络WCGAN-GP模型的语音增强研究 被引量:1
17
作者 许雯婷 龚晓峰 《计算机应用与软件》 北大核心 2024年第2期130-137,共8页
Wasserstein距离生成对抗网络(Wasserstein Generative Adversal Network,WGAN)模型^([1])在语音增强中运用广泛,但存在梯度易爆炸、性能不稳定等问题。引入梯度惩罚(Gradient Penalty,GP)和弹性网络条件约束,并将生成器和判别器优化成... Wasserstein距离生成对抗网络(Wasserstein Generative Adversal Network,WGAN)模型^([1])在语音增强中运用广泛,但存在梯度易爆炸、性能不稳定等问题。引入梯度惩罚(Gradient Penalty,GP)和弹性网络条件约束,并将生成器和判别器优化成深度全卷积神经网络(Deep Fully Convolutional Neural Networks,DFCNN)结构,提出一种基于DFCNN的弹性网络条件梯度惩罚(Wasserstein Conditional Generative Adversal Network Gradient Penalty,WCGAN-GP)模型。改进后的模型可以达到真实Lipschitz限制条件,提高了可控性、稳定性和特征提取能力,能更快优化训练。实验将改进后的模型与WGAN对不同噪声条件下的语音进行增强,结果证实了改进后的模型在语音增强方面的优越性。 展开更多
关键词 Wasserstein距离 深度全卷积神经网络 梯度惩罚 弹性网络 条件约束
下载PDF
基于轻量级全连接张量映射网络的高光谱图像分类方法
18
作者 林知心 郑玉棒 +2 位作者 马天宇 王蕊 李恒超 《电子学报》 EI CAS CSCD 北大核心 2024年第10期3541-3551,共11页
近年来,基于卷积神经网络的深度学习模型已经在高光谱图像分类领域取得优异表现.然而,模型性能的提升通常依赖于更深、更宽的网络结构,导致参数量和计算量增长,从而限制了模型在机载或星载载荷中的实际部署.为此,本文提出基于轻量级全... 近年来,基于卷积神经网络的深度学习模型已经在高光谱图像分类领域取得优异表现.然而,模型性能的提升通常依赖于更深、更宽的网络结构,导致参数量和计算量增长,从而限制了模型在机载或星载载荷中的实际部署.为此,本文提出基于轻量级全连接张量映射网络的高光谱图像分类方法.根据全连接张量网络分解的映射思想以及高光谱图像“图谱合一”的结构特点,本文设计两种张量映射卷积单元,通过使用多个具有全连接结构的小尺寸卷积核代替原始卷积核,降低了卷积层的时间和空间复杂度.此外,基于新单元构建残差双分支张量模块.双分支结构共享同一组权重参数,并采用通道分割操作减少特征通道数,提升特征提取过程的实时性.本文所提模型通过使用新单元和新模块充分挖掘高光谱图像的局部空谱信息和全局光谱信息,有效提高了分类性能并减少硬件资源消耗.在三个常用高光谱图像数据集上的实验结果表明,所提模型相较于其他现有工作具有更高的分类性能以及更低的参数量和计算量. 展开更多
关键词 高光谱图像分类 模型压缩 全连接张量网络分解 卷积神经网络 张量神经网络 轻量卷积模块
下载PDF
基于注意力机制的艾德莱斯绸纹饰图案分割研究
19
作者 黄凯茜 安娃 《包装工程》 CAS 北大核心 2024年第22期420-426,共7页
目的由于艾德莱斯绸具有丰富的色彩和复杂的纹饰图案,在对其进行图案分割时难度较大,容易出现错分割和漏分割的情况。为此,提出了基于注意力机制的艾德莱斯绸纹饰图案分割算法。方法采用FCN模型对艾德莱斯绸纹饰图像进行卷积训练,突出... 目的由于艾德莱斯绸具有丰富的色彩和复杂的纹饰图案,在对其进行图案分割时难度较大,容易出现错分割和漏分割的情况。为此,提出了基于注意力机制的艾德莱斯绸纹饰图案分割算法。方法采用FCN模型对艾德莱斯绸纹饰图像进行卷积训练,突出图像的语义特征信息。利用通道注意力模块和位置注意力模块,分别对艾德莱斯绸纹饰图像展开学习,得到维度完全相同的特征图。将两个模块特征图融合后与FCN模型输出图像再次融合,得到艾德莱斯绸纹饰图像的特征提取结果,选取图像中的感兴趣区域,完成对艾德莱斯绸纹饰图案的分割。结论实验结果表明,所提方法取得了精准度较高的分割结果,分割图像边缘清晰,没有出现错分割和漏分割的情况,分割结果总体上较为理想。 展开更多
关键词 注意力机制 艾德莱斯绸纹饰 图案分割 语义特征信息 全卷积神经网络 通道注意力模块
下载PDF
考虑多尺度输入及优化CNN-BiGRU的短期负荷预测
20
作者 张宇航 冉启武 +1 位作者 石卓见 熊芮 《科学技术与工程》 北大核心 2024年第34期14679-14689,共11页
短期的负荷预测是市场规划的重要前提且能有效保障电力系统的安全稳定运行,由于电力负荷随机性强、波动性大等问题导致预测精度难以提高,针对于此,提出了一种基于CEEMDAN-PE-SSA-CNN-BiGRU的短期电力负荷预测方法。首先,对于复杂多变的... 短期的负荷预测是市场规划的重要前提且能有效保障电力系统的安全稳定运行,由于电力负荷随机性强、波动性大等问题导致预测精度难以提高,针对于此,提出了一种基于CEEMDAN-PE-SSA-CNN-BiGRU的短期电力负荷预测方法。首先,对于复杂多变的电力负荷数据采用完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN)为子序列,计算其子序列的排列熵(permutation entropy, PE),将熵值相近的子序列重构得到新序列,降低了原始数据非平稳序列对预测精度的影响并优化计算量;其次,对重组序列进行特性分析,根据重组序列不同周期进而选取多尺度输入并搭建CNN-BiGRU预测模型。最后,选用麻雀搜索算法(sparrow search algorithm, SSA)来优化模型超参数通过汇总所有预测序列从而得到最终预测数据。使用本文模型以西班牙用电负荷为实例并与单一模型和组合模型进行对比,实验表明该模型预测效果更佳。 展开更多
关键词 负荷预测 完全自适应噪声集合经验模态分解 排列熵 麻雀搜索算法 卷积神经网络 双向门控循环单元
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部