Fe-Si-Mn-oxyhydroxide encrustations at the East Pacific Rise (EPR) near 13°N were analyzed using the scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS). These encrustations are ...Fe-Si-Mn-oxyhydroxide encrustations at the East Pacific Rise (EPR) near 13°N were analyzed using the scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS). These encrustations are mainly composed of amorphous Fe- Si-Mn-oxyhydroxides forming laminated, spherical, porous aggregates with some biodetritus, anhydrite, nontronite, and feldspar particles. Anhydrite particles and nontronite crystals in the Fe-Si-Mn-oxyhydroxide encrustations imply that the Fe-Si-Mn-oxyhy- droxide may have formed under relatively low- to high-temperature hydrothermal conditions. The Fe-Si-Mn-oxyhydroxide encrusta- tions on pillow basalts are 1-2mm thick. The growth rate of ferromanganese crusts in the survey area suggests that these encrusta- tions are an unlikely result of hydrogenic deposition alone having a hydrothermal and (Fe/Mn ratio up to 7.7 and Fe/(Fe+Mn+A1) ratio exceeding 0.78) hydrogenic origin (0.22 Fe/Mn ratio close to the mean value of 0.7 for open-ocean seamount crusts). The varying Fe/Mn ratios indicate that the Fe-Si-Mn-oxyhydroxide encrustations have formed through several stages of seafloor hydrother- malism. It is suggested that, at the initial formation stage, dense Fe-Si-oxyhydroxides with low Mn content deposit from a relatively reducing hydrothermal fluid, and then the loose Fe-Si-Mn-oxyhydroxides deposit on the Fe-Si-oxyhydroxides. As the oxidation degree of hydrothermal fluid increases and Si-oxide is inhibited, Mn-oxide will precipitate with Fe-oxyhydroxides.展开更多
基金supported by the National Key Basic Research Program of China (2013CB429700)the Shandong Province Natural Science Foundation for Distinguished Young Scholars (JQ200913)+1 种基金the National Natural Science Foundation of China (40830849)the National Special Fund for the Eleventh Five-Year Plan of COMRA (DY125-12-R-02 and DY125-11-R-05)
文摘Fe-Si-Mn-oxyhydroxide encrustations at the East Pacific Rise (EPR) near 13°N were analyzed using the scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS). These encrustations are mainly composed of amorphous Fe- Si-Mn-oxyhydroxides forming laminated, spherical, porous aggregates with some biodetritus, anhydrite, nontronite, and feldspar particles. Anhydrite particles and nontronite crystals in the Fe-Si-Mn-oxyhydroxide encrustations imply that the Fe-Si-Mn-oxyhy- droxide may have formed under relatively low- to high-temperature hydrothermal conditions. The Fe-Si-Mn-oxyhydroxide encrusta- tions on pillow basalts are 1-2mm thick. The growth rate of ferromanganese crusts in the survey area suggests that these encrusta- tions are an unlikely result of hydrogenic deposition alone having a hydrothermal and (Fe/Mn ratio up to 7.7 and Fe/(Fe+Mn+A1) ratio exceeding 0.78) hydrogenic origin (0.22 Fe/Mn ratio close to the mean value of 0.7 for open-ocean seamount crusts). The varying Fe/Mn ratios indicate that the Fe-Si-Mn-oxyhydroxide encrustations have formed through several stages of seafloor hydrother- malism. It is suggested that, at the initial formation stage, dense Fe-Si-oxyhydroxides with low Mn content deposit from a relatively reducing hydrothermal fluid, and then the loose Fe-Si-Mn-oxyhydroxides deposit on the Fe-Si-oxyhydroxides. As the oxidation degree of hydrothermal fluid increases and Si-oxide is inhibited, Mn-oxide will precipitate with Fe-oxyhydroxides.
基金financially supported by the Fundamental Research Funds for the Central Universities,China(No.2020CDJDPT001)the Chongqing Natural Science Foundation,China(No.cstc2021jcyj-msxm X0699)。