Hematite is an excellent catalyst for photoelectrochemical (PEC) water splitting but its performance has been highly limited by poor conductivity and high charge recombination.Here by a Zr-based treatment to create bu...Hematite is an excellent catalyst for photoelectrochemical (PEC) water splitting but its performance has been highly limited by poor conductivity and high charge recombination.Here by a Zr-based treatment to create bulk Fe_(2)ZrO_(5) in hematite and a F-based treatment to form an ultrathin surface FeF_(x) layer,the charge transfer can be highly improved and the charge recombination can be significantly suppressed.As a result,the FeF_(x) /Zr-Fe_(2)O_(3) photoanode presents an enhanced PEC performance with a photocurrent density of 2.43 m A/cm^(2)at 1.23 V vs.RHE,which is around 3 times higher than that of the pristine Fe_(2)O_(3) .The FeF_(x) /Zr-Fe_(2)O_(3) photoanode also shows a low onset potential of 0.77 V vs.RHE (100 mV lower than the pristine hematite).The performance is much higher than that of the sample treated by Zr or F alone,suggesting the synergistic effect between bulk Fe_(2)ZrO_(5) and surface FeF_(x) .By coupling with the FeNiOOH co-catalyst,the final photoanode can achieve a high photocurrent density of 2.81 mA/cm^(2) at 1.23 V vs.RHE.The novel design of Zr and F co-modified hematite can be used as a promising way to prepare efficient catalysts for solar water splitting.展开更多
Pt/ZrO_(2)catalysts promoted with MoO_(3)and Nb_(2)O_(5)were tested for the combustion of short-chain alkanes(namely,methane,ethane,propane,and n-hexane).For short-chain alkane combustion,the inhibition of MoO_(3)(for...Pt/ZrO_(2)catalysts promoted with MoO_(3)and Nb_(2)O_(5)were tested for the combustion of short-chain alkanes(namely,methane,ethane,propane,and n-hexane).For short-chain alkane combustion,the inhibition of MoO_(3)(for the methane reaction)dramatically transformed to promotion(for the ethane,propane,and n-hexane reactions)as the carbon chain length increased,whereas the remarkable promotion of Nb_(2)O_(5)gradually weakened with an increase in the carbon chain length.Based on a detailed study of the oxidation reactions of methane and propane over the catalysts,the different roles of the promoters in the reactions were ascribed to differences in the acidic properties of the surface and the oxidation or reduction states of the Pt species.The MoO_(3)promoter could decorate the surface of the Pt species for a Pt-Mo/ZrO_(2)catalyst,whereas the Nb_(2)O_(5)promoter on the support could be partially covered by Pt particles for a Pt-Nb/ZrO_(2)catalyst.The formation of accessible Pt-MoO_(3)interfacial sites,a high concentration of metallic Pt species,and a high surface acidity in Pt-Mo/ZrO_(2)were responsible for the enhanced activity for catalytic propane combustion.The lack of enough accessible Pt-Nb_(2)O_(5)interfacial sites but an enhanced surface acid sites in Pt-Nb/ZrO_(2)explained the slight improvement in activity for catalytic propane combustion.However,the stabilized Pt^(n+)species in Pt-Nb/ZrO_(2)were responsible for the much-improved activity for methane combustion,whereas the Pt^(n+)species in Pt-Mo/ZrO_(2)could be reduced during the oxidation reaction,and the fewer exposed surface Pt species because of MoO_(3)decoration accounted for the inhibited activity for methane combustion.In addition,it can be concluded that MoO_(3)promotion is favorable for the activation of C-C bonds,whereas Nb_(2)O_(5)promotion is more beneficial for the activation of C-H bonds with high energy.展开更多
The thermodynamic properties of Fe_(2)Ti_(3)O_(9) and Fe_(2)TiO_(5) were measured by means of the following solid state electrolyte cells:Pt,Fe+"FeO"||ZrO_(2)(CaO)||FeTiO_(3)+Fe_(2)Ti_(3)O_(9)+Fe_(2)O_(3),Pt...The thermodynamic properties of Fe_(2)Ti_(3)O_(9) and Fe_(2)TiO_(5) were measured by means of the following solid state electrolyte cells:Pt,Fe+"FeO"||ZrO_(2)(CaO)||FeTiO_(3)+Fe_(2)Ti_(3)O_(9)+Fe_(2)O_(3),Pt Pt,Fe+"FeOM"||ZrO_(2)(CaO)||FeTiO_(3)+Fe_(2)TiO_(5)+TiO_(2),Pt From the experimental data,the Gibbs energies of formation of Fe_(2)Ti_(3)O_(9) and Fe_(2)TiO_(5) were obtained:△G^(0)_(pr)(kJ·mol^(-1))=3459.7-0.847T,(1053K<T<1153K) △G^(0)_(pb)(kJ·mol^(-1))=-1700.2-0.465T,(1173K<T<1273K) Experimental results fit approximately to those of estimation.展开更多
The magnetic properties of (Nd_(0.9)Dy_(0.1))_(16)Co_(5)Fe_(70)Nb_(2)B_(7) permanent magnetic alloy prepared by powder metallurgy are:Br=1.08T,_(1)H_(C)=1620kA/m,(BH)_(max)=208kJ/m^(3).The behaviour of Nb in this allo...The magnetic properties of (Nd_(0.9)Dy_(0.1))_(16)Co_(5)Fe_(70)Nb_(2)B_(7) permanent magnetic alloy prepared by powder metallurgy are:Br=1.08T,_(1)H_(C)=1620kA/m,(BH)_(max)=208kJ/m^(3).The behaviour of Nb in this alloy was studied by joint methods of dynamic observation by high voltage electron microscope(HVEM)and Mossbauer effects.With Nb and Co substituting parts of Fe and adding a little Dy,practical magnetic alloy with excellent properties can be obtained.The thermal stability of it is 80 ℃ higher than that of ternary Nd-Fe-13 magnet.The study shows that adding Nb into Nd-Fe-B can make the intrinsic coercivity appear peak value at about Nb=2%(in mole fraction).Nb mainly enters into Nd-rich and B-rich phases,a little into Nd_(2)Fe_(14)B phase.展开更多
The unique properties of metal oxide surfaces,crystal surfaces and defects play vital roles in biomass upgrading reactions.In this work,hierarchical porous bowl-shaped ZrO_(2)(HB-ZrO_(2))with mixed crystal phase was d...The unique properties of metal oxide surfaces,crystal surfaces and defects play vital roles in biomass upgrading reactions.In this work,hierarchical porous bowl-shaped ZrO_(2)(HB-ZrO_(2))with mixed crystal phase was designed and employed as the support for loading AuPd bimetal with different proportions to synthesize AuPd/HB-ZrO_(2) catalysts.The effects of surface chemistry,oxygen defects,bimetal interaction and metal-support interaction of AuPd/HB-ZrO_(2) on catalytic performance for the selective oxidation of 5-hydroxymethylfurfural(HMF)to 2,5-furandicarboxylic acid(FDCA)were systematically investigated.The Au 2 Pd1/HB-ZrO_(2) catalyst afforded a satisfactory FDCA yield of 99.9%from HMF oxidation using O_(2) as the oxidant in water,accompanied with an excellent FDCA productivity at 97.6 mmol g^(−1) h^(−1).This work offers fresh insights into rationally designing efficient catalysts with oxygen-rich defects for the catalytic upgrading of biomass platform chemicals.展开更多
基金supported by the National Key R&D Program of China (2020YFA0406103)the National Natural Science Foundation of China (U1932211)+1 种基金the Collaborative Innovation Center of Suzhou Nano Science & Technology, the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)the 111 Project。
文摘Hematite is an excellent catalyst for photoelectrochemical (PEC) water splitting but its performance has been highly limited by poor conductivity and high charge recombination.Here by a Zr-based treatment to create bulk Fe_(2)ZrO_(5) in hematite and a F-based treatment to form an ultrathin surface FeF_(x) layer,the charge transfer can be highly improved and the charge recombination can be significantly suppressed.As a result,the FeF_(x) /Zr-Fe_(2)O_(3) photoanode presents an enhanced PEC performance with a photocurrent density of 2.43 m A/cm^(2)at 1.23 V vs.RHE,which is around 3 times higher than that of the pristine Fe_(2)O_(3) .The FeF_(x) /Zr-Fe_(2)O_(3) photoanode also shows a low onset potential of 0.77 V vs.RHE (100 mV lower than the pristine hematite).The performance is much higher than that of the sample treated by Zr or F alone,suggesting the synergistic effect between bulk Fe_(2)ZrO_(5) and surface FeF_(x) .By coupling with the FeNiOOH co-catalyst,the final photoanode can achieve a high photocurrent density of 2.81 mA/cm^(2) at 1.23 V vs.RHE.The novel design of Zr and F co-modified hematite can be used as a promising way to prepare efficient catalysts for solar water splitting.
文摘Pt/ZrO_(2)catalysts promoted with MoO_(3)and Nb_(2)O_(5)were tested for the combustion of short-chain alkanes(namely,methane,ethane,propane,and n-hexane).For short-chain alkane combustion,the inhibition of MoO_(3)(for the methane reaction)dramatically transformed to promotion(for the ethane,propane,and n-hexane reactions)as the carbon chain length increased,whereas the remarkable promotion of Nb_(2)O_(5)gradually weakened with an increase in the carbon chain length.Based on a detailed study of the oxidation reactions of methane and propane over the catalysts,the different roles of the promoters in the reactions were ascribed to differences in the acidic properties of the surface and the oxidation or reduction states of the Pt species.The MoO_(3)promoter could decorate the surface of the Pt species for a Pt-Mo/ZrO_(2)catalyst,whereas the Nb_(2)O_(5)promoter on the support could be partially covered by Pt particles for a Pt-Nb/ZrO_(2)catalyst.The formation of accessible Pt-MoO_(3)interfacial sites,a high concentration of metallic Pt species,and a high surface acidity in Pt-Mo/ZrO_(2)were responsible for the enhanced activity for catalytic propane combustion.The lack of enough accessible Pt-Nb_(2)O_(5)interfacial sites but an enhanced surface acid sites in Pt-Nb/ZrO_(2)explained the slight improvement in activity for catalytic propane combustion.However,the stabilized Pt^(n+)species in Pt-Nb/ZrO_(2)were responsible for the much-improved activity for methane combustion,whereas the Pt^(n+)species in Pt-Mo/ZrO_(2)could be reduced during the oxidation reaction,and the fewer exposed surface Pt species because of MoO_(3)decoration accounted for the inhibited activity for methane combustion.In addition,it can be concluded that MoO_(3)promotion is favorable for the activation of C-C bonds,whereas Nb_(2)O_(5)promotion is more beneficial for the activation of C-H bonds with high energy.
基金Supported by the National Natural Science Foundation of Chinathe Committee of Science and Technology of Liaoning Province and the State Education Committee of China。
文摘The thermodynamic properties of Fe_(2)Ti_(3)O_(9) and Fe_(2)TiO_(5) were measured by means of the following solid state electrolyte cells:Pt,Fe+"FeO"||ZrO_(2)(CaO)||FeTiO_(3)+Fe_(2)Ti_(3)O_(9)+Fe_(2)O_(3),Pt Pt,Fe+"FeOM"||ZrO_(2)(CaO)||FeTiO_(3)+Fe_(2)TiO_(5)+TiO_(2),Pt From the experimental data,the Gibbs energies of formation of Fe_(2)Ti_(3)O_(9) and Fe_(2)TiO_(5) were obtained:△G^(0)_(pr)(kJ·mol^(-1))=3459.7-0.847T,(1053K<T<1153K) △G^(0)_(pb)(kJ·mol^(-1))=-1700.2-0.465T,(1173K<T<1273K) Experimental results fit approximately to those of estimation.
基金Supported by the State Key Laboratory of Magnetism,Chinese Academy of Sciences。
文摘The magnetic properties of (Nd_(0.9)Dy_(0.1))_(16)Co_(5)Fe_(70)Nb_(2)B_(7) permanent magnetic alloy prepared by powder metallurgy are:Br=1.08T,_(1)H_(C)=1620kA/m,(BH)_(max)=208kJ/m^(3).The behaviour of Nb in this alloy was studied by joint methods of dynamic observation by high voltage electron microscope(HVEM)and Mossbauer effects.With Nb and Co substituting parts of Fe and adding a little Dy,practical magnetic alloy with excellent properties can be obtained.The thermal stability of it is 80 ℃ higher than that of ternary Nd-Fe-13 magnet.The study shows that adding Nb into Nd-Fe-B can make the intrinsic coercivity appear peak value at about Nb=2%(in mole fraction).Nb mainly enters into Nd-rich and B-rich phases,a little into Nd_(2)Fe_(14)B phase.
基金financially supported by the Natural Science Foundation of Jiangsu Province(No.BK20200917)the China Postdoctoral Science Foundation(No.2021M701474)+1 种基金Youth Talent Cultivation Plan of Jiangsu UniversityCollaborative Innovation Center for Water Treatment Technology and Materials.
文摘The unique properties of metal oxide surfaces,crystal surfaces and defects play vital roles in biomass upgrading reactions.In this work,hierarchical porous bowl-shaped ZrO_(2)(HB-ZrO_(2))with mixed crystal phase was designed and employed as the support for loading AuPd bimetal with different proportions to synthesize AuPd/HB-ZrO_(2) catalysts.The effects of surface chemistry,oxygen defects,bimetal interaction and metal-support interaction of AuPd/HB-ZrO_(2) on catalytic performance for the selective oxidation of 5-hydroxymethylfurfural(HMF)to 2,5-furandicarboxylic acid(FDCA)were systematically investigated.The Au 2 Pd1/HB-ZrO_(2) catalyst afforded a satisfactory FDCA yield of 99.9%from HMF oxidation using O_(2) as the oxidant in water,accompanied with an excellent FDCA productivity at 97.6 mmol g^(−1) h^(−1).This work offers fresh insights into rationally designing efficient catalysts with oxygen-rich defects for the catalytic upgrading of biomass platform chemicals.