Novel coal gangue-based persulfate catalyst(CG-FeCl_(2))was successfully synthesized by the means of calcinating under nitrogen atmosphere with the addition of ferrous chloride tetrahydrate(FeCl_(2)·_(4)H_(2)O).T...Novel coal gangue-based persulfate catalyst(CG-FeCl_(2))was successfully synthesized by the means of calcinating under nitrogen atmosphere with the addition of ferrous chloride tetrahydrate(FeCl_(2)·_(4)H_(2)O).The phase transformation of the prepared materials and gas products during the heating process are thoroughly investigated.It is suggested that ferrous chloride participated in the phase transformation and formed Si-O-Fe bonds.And the main gaseous products are H_(2)O,H_(2),and HCl during the heating process.Besides,the ability of CG-FeCl_(2) to activate peroxymonosulfate(PMS)for catalytic degradation of polycyclic aromatic hydrocarbons(PAHs)and phenol was deeply studied.More than 95%of naphthyl,phenanthrene and phenol were removed under optimizied conditions.In addition,1O_(2),·OH,and SO_(4)·−were involved in the CG-FeCl_(2)/PMS system from the free radical scavenging experiment,where 1O_(2) played a major role during the oxidation process.Furthermore,CG-FeCl_(2)/PMS system exhibited superior stability in a relatively wide pH range and the presence of common anion from related degradation experiments.Overall,the novel CG-FeCl_(2) is an efficient and environmentally friendly catalyst,displaying potential application prospect in the field of PAHs and phenol-contaminated wastewater treatment.展开更多
Studies have confirmed that iron induces epilepsy onset, and iron ion-induced epilepsy in anima models closely resembles the clinical situation. Models of post-traumatic epilepsy (PTE) were established by intracorti...Studies have confirmed that iron induces epilepsy onset, and iron ion-induced epilepsy in anima models closely resembles the clinical situation. Models of post-traumatic epilepsy (PTE) were established by intracortical injection of FeCl2 using stereotactic techniques. Electron microscopy revealed neuronal degeneration, with shrinkage of the neuronal soma, hyperplasia of rough endoplasmic reticulum, ribosomal detachment from the endoplasmic reticulum, and vacuolar degeneration of glial cells in the right frontal lobe of FeCl2-induced PTE rats. With prolonged time injuries became more severe and neuronal apoptosis was observed. Synapses in the hippocampal neuropil significantly increased (primarily type I/excitatory synapses) at day 14 following injury. Type II synapses (inhibitory synapse) were observed in the rat hippocampus at day 30. Cortical neuronal degeneration, apoptosis, glial cell proliferation, and ultrastructural hippocampal changes, in particular changes in type of neuronal synapse, play an important role in PTE onset.展开更多
Alumina-iron nanocomposite powders were prepared by a two-step process. In the first step, α-Al2O3-FeCl2 powder mixture was formed by mixing α-Al2O3 powders with FeCl2 solution followed by drying. In the second step...Alumina-iron nanocomposite powders were prepared by a two-step process. In the first step, α-Al2O3-FeCl2 powder mixture was formed by mixing α-Al2O3 powders with FeCl2 solution followed by drying. In the second step, the FeCl2 in the dry power mixture was selectively reduced to iron particles. A reduction temperature of 750℃ for 15 min in dry H2 was chosen based on the thermodynamic calculations. The concentration of iron in FeCl2 solution was calculated to be 20 vol. pct in the final composite. Two techniques were used to produce composite bulk materials. The Al2O3 nanocomposite powders were divided to two batches. The first batch of the produced mixture was hot pressed at 1400℃ and 27 MPa for 30 min in a graphite die. To study the effect of oxygen on the Al2O3/Fe interface bonding and mechanical properties of the composite, the second batch was heat treated in air at 700℃ for 20 min to partially oxidize the iron particles before hot pressing. Characterization of the composites was undertaken by conventional density measurements, X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron probe micro analysis (EPMA). The suggested processing route (mixing, reduction and hot pressing) produces ceramic-metal nanocomposite much tougher than the pure Al2O3. The fracture strength of the produced Al2O3/Fe nanocomposite is nearly twice that of the pure Al2O3. The presence of spinel phase, FeAl204, as thick layer around the Fe particles in the Al2O3 matrix has a detrimental effect on interfacial bonding between Fe and AI203 and the fracture properties of the composite.展开更多
基金National Key R&D Program of China(2019YFC1904903 and 2020YFC1806504)China Postdoctoral Science Foundation(2020M680757)Fundamental Research Funds for the Central Universities(2022XJHH08).
文摘Novel coal gangue-based persulfate catalyst(CG-FeCl_(2))was successfully synthesized by the means of calcinating under nitrogen atmosphere with the addition of ferrous chloride tetrahydrate(FeCl_(2)·_(4)H_(2)O).The phase transformation of the prepared materials and gas products during the heating process are thoroughly investigated.It is suggested that ferrous chloride participated in the phase transformation and formed Si-O-Fe bonds.And the main gaseous products are H_(2)O,H_(2),and HCl during the heating process.Besides,the ability of CG-FeCl_(2) to activate peroxymonosulfate(PMS)for catalytic degradation of polycyclic aromatic hydrocarbons(PAHs)and phenol was deeply studied.More than 95%of naphthyl,phenanthrene and phenol were removed under optimizied conditions.In addition,1O_(2),·OH,and SO_(4)·−were involved in the CG-FeCl_(2)/PMS system from the free radical scavenging experiment,where 1O_(2) played a major role during the oxidation process.Furthermore,CG-FeCl_(2)/PMS system exhibited superior stability in a relatively wide pH range and the presence of common anion from related degradation experiments.Overall,the novel CG-FeCl_(2) is an efficient and environmentally friendly catalyst,displaying potential application prospect in the field of PAHs and phenol-contaminated wastewater treatment.
基金the Science and Technology Project of Fujian Province of China,No.2007F5045the New Century Talent Support Project of Higher Learning School of Fujian Province,No.NCETFJ-0702
文摘Studies have confirmed that iron induces epilepsy onset, and iron ion-induced epilepsy in anima models closely resembles the clinical situation. Models of post-traumatic epilepsy (PTE) were established by intracortical injection of FeCl2 using stereotactic techniques. Electron microscopy revealed neuronal degeneration, with shrinkage of the neuronal soma, hyperplasia of rough endoplasmic reticulum, ribosomal detachment from the endoplasmic reticulum, and vacuolar degeneration of glial cells in the right frontal lobe of FeCl2-induced PTE rats. With prolonged time injuries became more severe and neuronal apoptosis was observed. Synapses in the hippocampal neuropil significantly increased (primarily type I/excitatory synapses) at day 14 following injury. Type II synapses (inhibitory synapse) were observed in the rat hippocampus at day 30. Cortical neuronal degeneration, apoptosis, glial cell proliferation, and ultrastructural hippocampal changes, in particular changes in type of neuronal synapse, play an important role in PTE onset.
文摘Alumina-iron nanocomposite powders were prepared by a two-step process. In the first step, α-Al2O3-FeCl2 powder mixture was formed by mixing α-Al2O3 powders with FeCl2 solution followed by drying. In the second step, the FeCl2 in the dry power mixture was selectively reduced to iron particles. A reduction temperature of 750℃ for 15 min in dry H2 was chosen based on the thermodynamic calculations. The concentration of iron in FeCl2 solution was calculated to be 20 vol. pct in the final composite. Two techniques were used to produce composite bulk materials. The Al2O3 nanocomposite powders were divided to two batches. The first batch of the produced mixture was hot pressed at 1400℃ and 27 MPa for 30 min in a graphite die. To study the effect of oxygen on the Al2O3/Fe interface bonding and mechanical properties of the composite, the second batch was heat treated in air at 700℃ for 20 min to partially oxidize the iron particles before hot pressing. Characterization of the composites was undertaken by conventional density measurements, X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron probe micro analysis (EPMA). The suggested processing route (mixing, reduction and hot pressing) produces ceramic-metal nanocomposite much tougher than the pure Al2O3. The fracture strength of the produced Al2O3/Fe nanocomposite is nearly twice that of the pure Al2O3. The presence of spinel phase, FeAl204, as thick layer around the Fe particles in the Al2O3 matrix has a detrimental effect on interfacial bonding between Fe and AI203 and the fracture properties of the composite.