Chromium plays a vital role in stainless steel due to its ability to improve the corrosion resistance of the latter.However,the re-lease of chromium from stainless steel slag(SSS)during SSS stockpiling causes detrimen...Chromium plays a vital role in stainless steel due to its ability to improve the corrosion resistance of the latter.However,the re-lease of chromium from stainless steel slag(SSS)during SSS stockpiling causes detrimental environmental issues.To prevent chromium pollution,the effects of iron oxide on crystallization behavior and spatial distribution of spinel were investigated in this work.The results revealed that FeO was more conducive to the growth of spinels compared with Fe2O3 and Fe3O4.Spinels were found to be mainly distrib-uted at the top and bottom of slag.The amount of spinel phase at the bottom decreased with the increasing FeO content,while that at the top increased.The average particle size of spinel in the slag with 18wt%FeO content was 12.8μm.Meanwhile,no notable structural changes were observed with a further increase in FeO content.In other words,the spatial distribution of spinel changed when the content of iron oxide varied in the range of 8wt%to 18wt%.Finally,less spinel was found at the bottom of slag with a FeO content of 23wt%.展开更多
Novel coal gangue-based persulfate catalyst(CG-FeCl_(2))was successfully synthesized by the means of calcinating under nitrogen atmosphere with the addition of ferrous chloride tetrahydrate(FeCl_(2)·_(4)H_(2)O).T...Novel coal gangue-based persulfate catalyst(CG-FeCl_(2))was successfully synthesized by the means of calcinating under nitrogen atmosphere with the addition of ferrous chloride tetrahydrate(FeCl_(2)·_(4)H_(2)O).The phase transformation of the prepared materials and gas products during the heating process are thoroughly investigated.It is suggested that ferrous chloride participated in the phase transformation and formed Si-O-Fe bonds.And the main gaseous products are H_(2)O,H_(2),and HCl during the heating process.Besides,the ability of CG-FeCl_(2) to activate peroxymonosulfate(PMS)for catalytic degradation of polycyclic aromatic hydrocarbons(PAHs)and phenol was deeply studied.More than 95%of naphthyl,phenanthrene and phenol were removed under optimizied conditions.In addition,1O_(2),·OH,and SO_(4)·−were involved in the CG-FeCl_(2)/PMS system from the free radical scavenging experiment,where 1O_(2) played a major role during the oxidation process.Furthermore,CG-FeCl_(2)/PMS system exhibited superior stability in a relatively wide pH range and the presence of common anion from related degradation experiments.Overall,the novel CG-FeCl_(2) is an efficient and environmentally friendly catalyst,displaying potential application prospect in the field of PAHs and phenol-contaminated wastewater treatment.展开更多
Pure compounds and kaolin were employed to investigate the reaction behavior of ferric oxide in thetrinarysystem Fe2O3?SiO2?Al2O3 during reductive sintering process. The thermodynamic analyses and reductive sintering ...Pure compounds and kaolin were employed to investigate the reaction behavior of ferric oxide in thetrinarysystem Fe2O3?SiO2?Al2O3 during reductive sintering process. The thermodynamic analyses and reductive sintering experimental results show that ferrous oxide generated from the reduction of ferric oxide by carbon can react with silicon dioxide and aluminum oxide to form ferrous silicate and hercynite at 1173 K, respectively. In the trinary system Fe2O3?SiO2?Al2O3, ferrous oxide obtained from ferric oxide reduction preferentially reacts with aluminum oxide to form hercynite, and the reaction of ferrous oxide with silicon dioxide occurs only when there is surplus ferrous oxide after the exhaustion of aluminum oxide. When sintering temperature rises to 1473 K, hercynite further reacts with silicon dioxide to form mullite and ferrous oxide. Results presented in this work may throw a new light upon the separation of alumina and silica present in Al/Fe-bearing materials with low mass ratio of alumina to silica in alumina production.展开更多
In order to develop a low-cost approach for separating macro amounts of Mo and W, the effects of parameters on the separation using FeSO4 as precipitation reagent were studied. The results show that the optimum reacti...In order to develop a low-cost approach for separating macro amounts of Mo and W, the effects of parameters on the separation using FeSO4 as precipitation reagent were studied. The results show that the optimum reaction temperature is 10 °C, and the separation factor does not further improve after a reaction time of 7 h. Moreover, slow dropping speed of the precipitation reagent is beneficial for improving the separation efficiency. When the H+/W molar ratio is below 1/1, the addition of acid to a neutral solution is favorable to the separation. For the solution with an ammonium concentration below 3 mol/L, the separation factor is high due to the high W-precipitation rate. Furthermore, the method is also effective when it is applied to industrial solution containing some other impurities. All these indicate the ferrous salts have great potential for removing W from Mo on a commercial scale.展开更多
Magnetite concentrate was recovered from ferrous sulphate by co-precipitation and magnetic separation. In co-precipitation process, the effects of reaction conditions on iron recovery were studied, and the optimal rea...Magnetite concentrate was recovered from ferrous sulphate by co-precipitation and magnetic separation. In co-precipitation process, the effects of reaction conditions on iron recovery were studied, and the optimal reaction parameters are proposed as follows: n(CaO)/n(Fe2+) 1.4:1, reaction temperature 80 ℃, ferrous ion concentration 0.4 mol/L, and the final mole ratio of Fe3+ to FJ+ in the reaction solution 1.9-2.1. In magnetic separation process, the effects of milling time and magnetic induction intensity on iron recovery were investigated. Wet milling played an important part in breaking the encapsulated magnetic phases. The results showed that the mixed product was wet-milled for 20 min before magnetic separation, the grade and recovery rate of iron in magnetite concentrate were increased from 51.41% and 84.15% to 62.05% and 85.35%, respectively.展开更多
Polyethylene (PE) films with additives consisting mainly of oleic acid and ferrous ions were subjected to accelerated degradation at simulated composting temperatures.Based on Fourier transform infrared spectroscopy a...Polyethylene (PE) films with additives consisting mainly of oleic acid and ferrous ions were subjected to accelerated degradation at simulated composting temperatures.Based on Fourier transform infrared spectroscopy and measurements of mechanical properties and viscosity average molecular weight,the degradation of the films was characterized and the degradation mechanism was discussed.The films containing additives with ferrous ions represent considerable decreases in molecular weight,and the carbonyl groups and hydroperoxides in the aging films show different trends of increase with the aging time.These results indicate that the ferrous ion plays an important role in the degradation of PE films and accelerates the degradation of PE.展开更多
EDTA was used as an enhancer for Fe 2+ catalyzed light emission from luminol oxidation by dissolved oxygen. As a result, the limit of detection for ferrous ion with flow injection analysis was improved by a fact...EDTA was used as an enhancer for Fe 2+ catalyzed light emission from luminol oxidation by dissolved oxygen. As a result, the limit of detection for ferrous ion with flow injection analysis was improved by a factor of 160 by addition of EDTA to the luminol solution. Fe 2+ and Fe 3+ were determined simultaneously with a novel copper-coated zinc reductor minicolumn installed in one of the shunt after sample splitting in the manifold. The reductor minicolumn can be used for 3000 determinations at least. The dynamic range of determination was 1×10 -9 ~1×10 -5 mol·L -1 , with the limit of detection of 2.7×10 10 and 3.5×10 10 mol·L 1 ,for Fe 2+ and Fe 3+ , respectively. The preci sion for determination of 2×10 7 mol·L 1 of Fe 2+ and Fe 3+ was 2.3% and 4.0% (n=8), respectively, at a sampling rate of 60 h -1 . Cr 3+ and Co 2+ interfere. Fe 2+ and Fe 3+ in mixture were determined with satisfactory results. Samples of Fe 2+ and Fe 3+ were determined simultaneously and the results in good agreement with the standard spectrophotometric method. Indications were shown that EDTA functions as an enhancer, Fe 2+ as a catalyst, and oxygen is the oxidant of the chemiluminescent reaction, and the mechanism of the reaction was discussed.展开更多
The aniline degradation by persulfate activated with ferrous ion (Fe2+ ) was investigated in batch reactor at ambient temperature. The experimental factors in aqueous solutions including persulfate concentration, Fe2+...The aniline degradation by persulfate activated with ferrous ion (Fe2+ ) was investigated in batch reactor at ambient temperature. The experimental factors in aqueous solutions including persulfate concentration, Fe2+ concentration, pH and ionic strength level were discussed. It is demonstrated that, aniline degradation rate increases with increasing persulfate concentration, but much more ferrous ion inhibits the aniline degradation. When the aniline concentration is 0.10 mmol/L, the maximum aniline degradation occurs at the S2O82- to Fe2+ molar ratio of 250/5 at pH 7.0. In the pH range of 5.0-8.5, increasing pH causes higher aniline degradation. What's more, the increase of ionic strength in solution causes inhibiting in the reaction. Produced intermediates during the oxidation process were identified using gas chromatography-mass spectrometry (GC-MS) technology. And degradation pathways of aniline were also tentatively proposed.展开更多
The gleyisation of representative paddy soils in the middle reaches of the Yangtze caver was characterized,taking oxidation-reduction potential(Eh),the amount of active reducing substances and the forms of iron and ma...The gleyisation of representative paddy soils in the middle reaches of the Yangtze caver was characterized,taking oxidation-reduction potential(Eh),the amount of active reducing substances and the forms of iron and manganese as the parameters.The Eh value was linearly related with the logarithm of the amount of active reducing substances, which was contributed by ferrous iron by 83% on an avers.The degree of gleyization of dament horizons was graded as ungleyed,slightly gleyed,mildly gleyed and gleyed.The Eh of the four grades was>500,300-500,100-300 and<100 mV,respectively, and the corresponding amoks of active reducing substances was<1,1-7,7-30 and>30 mmol.kg(-1),respectively.The amount of ferrous iron of the four grades was<0.5,0.5-5,5-25 and > 25 mmol kg-1,respectively.The extent of gleyisation of a soil was classified as upper-gleyed, middle-gleyed and lower-gleyed, depending on whether the depth of the gley horbon was less than 30 cm,30-60 cm or more than 60 cm.展开更多
Synthetic slag samples of the CaO-SiO2-MgO-A1203-Cr203 system were obtained to clarify the effect of FeO on the formation of spinel phases and Cr distribution. X-ray diffraction (XRD) and scanning electron microsco...Synthetic slag samples of the CaO-SiO2-MgO-A1203-Cr203 system were obtained to clarify the effect of FeO on the formation of spinel phases and Cr distribution. X-ray diffraction (XRD) and scanning electron microscopy (SEM) equipped with energy-dispersive spectroscopy (EDS), as well as the thermodynamic software FactSage 6.2, were used for sample characterization. The results show that the addition of FeO can decrease the viscosity of molten slag and the precipitation temperatures of melilite and merwinite. The solidus temperature significantly decreases from 1400 to 1250℃ with the increase of FeO content from 0wt% to 6wt%. The addition of FeO could enhance the content of Cr in spinel phases and reduce the content of Cr in soluble minerals, such as merwinite, melilite, and dicalcium silicate. Hence, the addition of FeO is conducive to decreasing Cr leaching.展开更多
A great amount of ferrous tailings and slag cause severe damage to the ecological environment, which must be reclaimed and utilized. The composition, type, and characteristics of ferrous tailings and slag in China wer...A great amount of ferrous tailings and slag cause severe damage to the ecological environment, which must be reclaimed and utilized. The composition, type, and characteristics of ferrous tailings and slag in China were introduced. The research status and the application outlook of glass ceramics made from ferrous tailings and slag were discussed. Glass ceramics made from ferrous tailings and slag can be applied to various fields, and it will be environmentally conscious materials in the 21st century.展开更多
A wet catalytic oxidation at room temperature was investigated with solution containing ferric, ferrous and cupric ions for H2S removal. The experiments were carried out in a two step process, and the results obtained...A wet catalytic oxidation at room temperature was investigated with solution containing ferric, ferrous and cupric ions for H2S removal. The experiments were carried out in a two step process, and the results obtained show that the removal efficiency of H2S can always reach 100% in a 300 mm scrubbing column with four sieve plates, and the regeneration of ferric ions in 200 mm bubble column can match the consumed ferric species in absorption. Removal of H2S, production of elemental sulfur and regeneration of ferric, cupric ions can all be accomplished at the same time. No raw material is consumed except O2 in flue gas or air, the process has no secondary pollution and no problem of catalyst degradation and congestion.展开更多
To study the effects of selenium on root oxidizing ability and yield of rice under ferrous stress, a pot culture experiment was conducted, the activity of glutathione peroxidase (GSH-Px) and the concentration of malon...To study the effects of selenium on root oxidizing ability and yield of rice under ferrous stress, a pot culture experiment was conducted, the activity of glutathione peroxidase (GSH-Px) and the concentration of malonaldelyde (MDA) were determined. The root oxidizing ability and yield characters of rice were examined. Results showed that appropriate amount of Se enhanced the activity of glutathione peroxidase and the oxidizing ability of rice roots significantly, reduced the concentration of MDA, increased 1000-grain weight of rice, F = 26.96**, decreased empty and blighted grain rate, increased the rice yield, F = 11.53**, and enhanced the rice resistance under ferrous stress.展开更多
A novel synthesis of LiFePO4/C from Fe2O3 with no extra carbon or carbon-containing reductant was introduced: Fe2O3 (+NH4H2PO4)→Fe2P2O7(+Li2CO3+glucose)→LiFePO4/C. X-ray diffractometry (XRD), Fourier trans...A novel synthesis of LiFePO4/C from Fe2O3 with no extra carbon or carbon-containing reductant was introduced: Fe2O3 (+NH4H2PO4)→Fe2P2O7(+Li2CO3+glucose)→LiFePO4/C. X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were utilized to characterize relevant products obtained in the synthetic procedure. The reaction of Fe2P2O7 and Li2CO3 was investigated by thermo-gravimetric and differential thermal analysis (TGA-DTA). Fe2O3 is completely reduced to Fe2P2O7 by NH4H2PO4 at 700 ℃ and Fe2P2O7 fully reacts with Li2CO3 to form LiFePO4 in the temperature range of 663.4-890 ℃. The primary particles of LiFePO4/C samples prepared at 670, 700 and 750 ℃ respectively exhibit uniform morphology and narrow size distribution, 0.5-3 μm for those obtained at 670 and 700 ℃ and 0.5-5 μm for those obtained at 750 ℃. LiFePO4/C (carbon content of 5.49%, mass fraction) made at 670 ℃ shows an appreciable average capacity of 153.2 mA·h/g at 0.1C in the first 50 cycles.展开更多
The transformation behavior of ferrous sulfate was examined during hematite precipitation for iron removal in hydrometallurgical zinc.Specifically,the effects of the method used for oxygen supply(pre-crystallization o...The transformation behavior of ferrous sulfate was examined during hematite precipitation for iron removal in hydrometallurgical zinc.Specifically,the effects of the method used for oxygen supply(pre-crystallization or pre-oxidation of ferrous sulfate)and temperature(170–190℃)on the redissolution and oxidation–hydrolysis of ferrous sulfate were studied.The precipitation characteristics and phase characterization of the hematite product were investigated.The results showed that the solubility of ferrous sulfate was considerably lower at elevated temperatures.The dissolution behavior of ferrous sulfate crystals was influenced by both the concentrations of free acid and zinc sulfate and the oxydrolysis of ferrous ions.Rapid oxydrolysis of ferrous ions may serve as the dissolution driving force.Hematite precipitation proceeded via the following sequential steps:crystallization,redissolution,oxidation,and precipitation of ferrous sulfate.The dissolution of ferrous sulfate was slow,which helped to maintain a low supersaturation environment,thereby affording the production of high-grade hematite.展开更多
Nitric oxide (NO) removal and sulfur dioxide (SO2) removal by sodium persulfate (Na2S2O8) were studied in a Bubble Column Reactor. The proposed reaction pathways of NO and SO2 removal are discussed. The effects ...Nitric oxide (NO) removal and sulfur dioxide (SO2) removal by sodium persulfate (Na2S2O8) were studied in a Bubble Column Reactor. The proposed reaction pathways of NO and SO2 removal are discussed. The effects of temperatures (35-90℃), Na25208 (0.05-0.5 mol·L-1), FeSO4 (0.5-5.0 m mol·L-1) and H2O2 (0.25 mol·L-1) on NO and SO2 removal were investigated. The results indicated that increased persulfate concentration led to increase in NO removal at various temperatures. SO2 was almost completely removed in the temperature range of 55-85 ℃. Fe2 + accelerated persulfate activation and enhanced NO removal efficiency. At 0.2 mol· L- 1 Na2S2O8 and 0.5-1.0 mmol· L-1Fe2 +, NO removal of 93.5%-99% was obtained at 75-90 ℃, SO2 removal was higher than 99% at all temperatures. The addition of 0.25 mol. L i H202 into 0.2 mol·L-1· Na2S2O8 solution promoted NO removal efficiency apparently until utterly decomposition of H2O2, the SO2 removal was as high as 98.4% separately at 35 ℃ and 80 ℃.展开更多
The effect of hydraulic retention time (HRT) and pH on the biooxidation of ferrous iron during simulated acid mine drainage (AMD) treatment was investigated.The simulated AMD was highly acidic (pH 2.5), rich in iron (...The effect of hydraulic retention time (HRT) and pH on the biooxidation of ferrous iron during simulated acid mine drainage (AMD) treatment was investigated.The simulated AMD was highly acidic (pH 2.5), rich in iron (about 1700 mg/L) and copper (about 200 mg/L), and contained high concentrations of sulfate (about 4700 mg/L).The biooxidation of ferrous iron was studied in a laboratory-scale upflow packed bed bioreactor (PBR).The HRT was shortened stepwise from 40 h to 20 h, 13 h, and 8 h under the acidic environment at a pH value of 2.2.Then, the influent pH value was changed from 2.2 to 1.2 at a constant suitable HRT.Physiochemical and microbial community structure analyses were performed on water samples and stuffing collected from the bioreactor under different conditions.The results indicate that the efficiency of ferrous iron oxidation gradually decreased with the decrease of HRT, and when the HRT exceeded 13 h, ferrous iron in AMD was almost completely oxidized.In addition, the best efficiency of ferrous iron oxidation was achieved at the influent pH value of 1.8.Microbial community structure analyses show that Leptospirillum is the predominant genus attached in the bioreactor, and low influent pH values are suitable for the growth of Leptospirillum.展开更多
This paper introduces a brazing process between Al2O3 ceramic and Invar alloy.Al2O3 can be brazed with Invar effectively.The interfacial structure of Al2O3/Invar joint can be expressed as:Invar/Ag(s,s)+Cu(s,s)+...This paper introduces a brazing process between Al2O3 ceramic and Invar alloy.Al2O3 can be brazed with Invar effectively.The interfacial structure of Al2O3/Invar joint can be expressed as:Invar/Ag(s,s)+Cu(s,s)+Fe2Ti(zone Ⅰ)/Ag(s,s)+Cu(s,s)+Fe2Ti+NiTi+Cu3Ti(zone Ⅱ)/Ag(s,s)+Cu(s,s)+Cu2Ti+Al(s,s)+TiC+TiO(zone Ⅲ)/Al2O3.The maximum shear strength of 139 MPa was measured for as-brazed Al2O3/Invar joint brazed at 850℃ for 25 min or 900℃ for 15 min.展开更多
In the interest of accelerating aniline degradation, Fe2+ and chelated Fe2+ activated persulfate oxidations were investigated in neutral pH condition. Three kinds of chelating agents were selected including citric aci...In the interest of accelerating aniline degradation, Fe2+ and chelated Fe2+ activated persulfate oxidations were investigated in neutral pH condition. Three kinds of chelating agents were selected including citric acid, oxalic acid and ethylenediamine tetraaceatate(EDTA) to maintain available Fe2+. The results indicate that the concentration of chelating agent and ferrous ion didn't follow a linear relationship with the degradation rate of aniline. A 1/1 ratio of chelating agent/Fe2+ results in a higher degradation rate compared to the results by other ratios. The oxidation enhancement factor using oxalic acid was found to be relatively low. In contrast, citric acid is more suitable chelating agent in the ferrous iron activated persulfate system and aniline exhibits a highest degradation with a persulfate/Fe2+/citric acid/aniline molar ratio of 50/25/25/1 compared to other molar ratios.展开更多
基金the National Natural Science Foundation of China(Nos.52074078 and 52374327)the Applied Fundamental Research Program of Liaoning Province(No.2023JH2/101600002)+2 种基金the Shenyang Young Middle-Aged Scientific and Technological Innovation Talent Support Program(No.RC220491)the Liaoning Province Steel Industry-University-Research Innovation Alliance Cooperation Project of Bensteel Group(No.KJBLM202202)the Fundamental Research Funds for the Central Universities(Nos.N2201023 and N2325009).
文摘Chromium plays a vital role in stainless steel due to its ability to improve the corrosion resistance of the latter.However,the re-lease of chromium from stainless steel slag(SSS)during SSS stockpiling causes detrimental environmental issues.To prevent chromium pollution,the effects of iron oxide on crystallization behavior and spatial distribution of spinel were investigated in this work.The results revealed that FeO was more conducive to the growth of spinels compared with Fe2O3 and Fe3O4.Spinels were found to be mainly distrib-uted at the top and bottom of slag.The amount of spinel phase at the bottom decreased with the increasing FeO content,while that at the top increased.The average particle size of spinel in the slag with 18wt%FeO content was 12.8μm.Meanwhile,no notable structural changes were observed with a further increase in FeO content.In other words,the spatial distribution of spinel changed when the content of iron oxide varied in the range of 8wt%to 18wt%.Finally,less spinel was found at the bottom of slag with a FeO content of 23wt%.
基金National Key R&D Program of China(2019YFC1904903 and 2020YFC1806504)China Postdoctoral Science Foundation(2020M680757)Fundamental Research Funds for the Central Universities(2022XJHH08).
文摘Novel coal gangue-based persulfate catalyst(CG-FeCl_(2))was successfully synthesized by the means of calcinating under nitrogen atmosphere with the addition of ferrous chloride tetrahydrate(FeCl_(2)·_(4)H_(2)O).The phase transformation of the prepared materials and gas products during the heating process are thoroughly investigated.It is suggested that ferrous chloride participated in the phase transformation and formed Si-O-Fe bonds.And the main gaseous products are H_(2)O,H_(2),and HCl during the heating process.Besides,the ability of CG-FeCl_(2) to activate peroxymonosulfate(PMS)for catalytic degradation of polycyclic aromatic hydrocarbons(PAHs)and phenol was deeply studied.More than 95%of naphthyl,phenanthrene and phenol were removed under optimizied conditions.In addition,1O_(2),·OH,and SO_(4)·−were involved in the CG-FeCl_(2)/PMS system from the free radical scavenging experiment,where 1O_(2) played a major role during the oxidation process.Furthermore,CG-FeCl_(2)/PMS system exhibited superior stability in a relatively wide pH range and the presence of common anion from related degradation experiments.Overall,the novel CG-FeCl_(2) is an efficient and environmentally friendly catalyst,displaying potential application prospect in the field of PAHs and phenol-contaminated wastewater treatment.
基金Project(51274243)supported by the National Natural Science Foundation of China
文摘Pure compounds and kaolin were employed to investigate the reaction behavior of ferric oxide in thetrinarysystem Fe2O3?SiO2?Al2O3 during reductive sintering process. The thermodynamic analyses and reductive sintering experimental results show that ferrous oxide generated from the reduction of ferric oxide by carbon can react with silicon dioxide and aluminum oxide to form ferrous silicate and hercynite at 1173 K, respectively. In the trinary system Fe2O3?SiO2?Al2O3, ferrous oxide obtained from ferric oxide reduction preferentially reacts with aluminum oxide to form hercynite, and the reaction of ferrous oxide with silicon dioxide occurs only when there is surplus ferrous oxide after the exhaustion of aluminum oxide. When sintering temperature rises to 1473 K, hercynite further reacts with silicon dioxide to form mullite and ferrous oxide. Results presented in this work may throw a new light upon the separation of alumina and silica present in Al/Fe-bearing materials with low mass ratio of alumina to silica in alumina production.
基金Project (2007AA06Z129) supported by the National High-tech Research and Development Program of China
文摘In order to develop a low-cost approach for separating macro amounts of Mo and W, the effects of parameters on the separation using FeSO4 as precipitation reagent were studied. The results show that the optimum reaction temperature is 10 °C, and the separation factor does not further improve after a reaction time of 7 h. Moreover, slow dropping speed of the precipitation reagent is beneficial for improving the separation efficiency. When the H+/W molar ratio is below 1/1, the addition of acid to a neutral solution is favorable to the separation. For the solution with an ammonium concentration below 3 mol/L, the separation factor is high due to the high W-precipitation rate. Furthermore, the method is also effective when it is applied to industrial solution containing some other impurities. All these indicate the ferrous salts have great potential for removing W from Mo on a commercial scale.
基金Project(2013A090100013)supported by the Special Project on the Integration of Industry,Education and Research of Guangdong Province,ChinaProject(201407300993)supported by the High Technology Research and Development Program of Xinjiang Uygur Autonomous Region,China
文摘Magnetite concentrate was recovered from ferrous sulphate by co-precipitation and magnetic separation. In co-precipitation process, the effects of reaction conditions on iron recovery were studied, and the optimal reaction parameters are proposed as follows: n(CaO)/n(Fe2+) 1.4:1, reaction temperature 80 ℃, ferrous ion concentration 0.4 mol/L, and the final mole ratio of Fe3+ to FJ+ in the reaction solution 1.9-2.1. In magnetic separation process, the effects of milling time and magnetic induction intensity on iron recovery were investigated. Wet milling played an important part in breaking the encapsulated magnetic phases. The results showed that the mixed product was wet-milled for 20 min before magnetic separation, the grade and recovery rate of iron in magnetite concentrate were increased from 51.41% and 84.15% to 62.05% and 85.35%, respectively.
文摘Polyethylene (PE) films with additives consisting mainly of oleic acid and ferrous ions were subjected to accelerated degradation at simulated composting temperatures.Based on Fourier transform infrared spectroscopy and measurements of mechanical properties and viscosity average molecular weight,the degradation of the films was characterized and the degradation mechanism was discussed.The films containing additives with ferrous ions represent considerable decreases in molecular weight,and the carbonyl groups and hydroperoxides in the aging films show different trends of increase with the aging time.These results indicate that the ferrous ion plays an important role in the degradation of PE films and accelerates the degradation of PE.
文摘EDTA was used as an enhancer for Fe 2+ catalyzed light emission from luminol oxidation by dissolved oxygen. As a result, the limit of detection for ferrous ion with flow injection analysis was improved by a factor of 160 by addition of EDTA to the luminol solution. Fe 2+ and Fe 3+ were determined simultaneously with a novel copper-coated zinc reductor minicolumn installed in one of the shunt after sample splitting in the manifold. The reductor minicolumn can be used for 3000 determinations at least. The dynamic range of determination was 1×10 -9 ~1×10 -5 mol·L -1 , with the limit of detection of 2.7×10 10 and 3.5×10 10 mol·L 1 ,for Fe 2+ and Fe 3+ , respectively. The preci sion for determination of 2×10 7 mol·L 1 of Fe 2+ and Fe 3+ was 2.3% and 4.0% (n=8), respectively, at a sampling rate of 60 h -1 . Cr 3+ and Co 2+ interfere. Fe 2+ and Fe 3+ in mixture were determined with satisfactory results. Samples of Fe 2+ and Fe 3+ were determined simultaneously and the results in good agreement with the standard spectrophotometric method. Indications were shown that EDTA functions as an enhancer, Fe 2+ as a catalyst, and oxygen is the oxidant of the chemiluminescent reaction, and the mechanism of the reaction was discussed.
基金Project partly supported by a Grant from E.I. du Pont de Nemours and Company to Rutgers UniversityProject(2010B05020007) supported by the Foundation of Science and Technology Planning of Guangdong Province, China+2 种基金Project(2011ZM0054) supported by the Fundamental Research Funds for the Central Universities of ChinaProject(2011K0013) supported by the Research Fund Program of Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, ChinaProject supported by the Research Fund of Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, China
文摘The aniline degradation by persulfate activated with ferrous ion (Fe2+ ) was investigated in batch reactor at ambient temperature. The experimental factors in aqueous solutions including persulfate concentration, Fe2+ concentration, pH and ionic strength level were discussed. It is demonstrated that, aniline degradation rate increases with increasing persulfate concentration, but much more ferrous ion inhibits the aniline degradation. When the aniline concentration is 0.10 mmol/L, the maximum aniline degradation occurs at the S2O82- to Fe2+ molar ratio of 250/5 at pH 7.0. In the pH range of 5.0-8.5, increasing pH causes higher aniline degradation. What's more, the increase of ionic strength in solution causes inhibiting in the reaction. Produced intermediates during the oxidation process were identified using gas chromatography-mass spectrometry (GC-MS) technology. And degradation pathways of aniline were also tentatively proposed.
文摘The gleyisation of representative paddy soils in the middle reaches of the Yangtze caver was characterized,taking oxidation-reduction potential(Eh),the amount of active reducing substances and the forms of iron and manganese as the parameters.The Eh value was linearly related with the logarithm of the amount of active reducing substances, which was contributed by ferrous iron by 83% on an avers.The degree of gleyization of dament horizons was graded as ungleyed,slightly gleyed,mildly gleyed and gleyed.The Eh of the four grades was>500,300-500,100-300 and<100 mV,respectively, and the corresponding amoks of active reducing substances was<1,1-7,7-30 and>30 mmol.kg(-1),respectively.The amount of ferrous iron of the four grades was<0.5,0.5-5,5-25 and > 25 mmol kg-1,respectively.The extent of gleyisation of a soil was classified as upper-gleyed, middle-gleyed and lower-gleyed, depending on whether the depth of the gley horbon was less than 30 cm,30-60 cm or more than 60 cm.
基金the Chinese Scholarship Council for financial support
文摘Synthetic slag samples of the CaO-SiO2-MgO-A1203-Cr203 system were obtained to clarify the effect of FeO on the formation of spinel phases and Cr distribution. X-ray diffraction (XRD) and scanning electron microscopy (SEM) equipped with energy-dispersive spectroscopy (EDS), as well as the thermodynamic software FactSage 6.2, were used for sample characterization. The results show that the addition of FeO can decrease the viscosity of molten slag and the precipitation temperatures of melilite and merwinite. The solidus temperature significantly decreases from 1400 to 1250℃ with the increase of FeO content from 0wt% to 6wt%. The addition of FeO could enhance the content of Cr in spinel phases and reduce the content of Cr in soluble minerals, such as merwinite, melilite, and dicalcium silicate. Hence, the addition of FeO is conducive to decreasing Cr leaching.
基金Item Sponsored by National Natural Science Foundation of China (50204005 ,50374029)
文摘A great amount of ferrous tailings and slag cause severe damage to the ecological environment, which must be reclaimed and utilized. The composition, type, and characteristics of ferrous tailings and slag in China were introduced. The research status and the application outlook of glass ceramics made from ferrous tailings and slag were discussed. Glass ceramics made from ferrous tailings and slag can be applied to various fields, and it will be environmentally conscious materials in the 21st century.
文摘A wet catalytic oxidation at room temperature was investigated with solution containing ferric, ferrous and cupric ions for H2S removal. The experiments were carried out in a two step process, and the results obtained show that the removal efficiency of H2S can always reach 100% in a 300 mm scrubbing column with four sieve plates, and the regeneration of ferric ions in 200 mm bubble column can match the consumed ferric species in absorption. Removal of H2S, production of elemental sulfur and regeneration of ferric, cupric ions can all be accomplished at the same time. No raw material is consumed except O2 in flue gas or air, the process has no secondary pollution and no problem of catalyst degradation and congestion.
文摘To study the effects of selenium on root oxidizing ability and yield of rice under ferrous stress, a pot culture experiment was conducted, the activity of glutathione peroxidase (GSH-Px) and the concentration of malonaldelyde (MDA) were determined. The root oxidizing ability and yield characters of rice were examined. Results showed that appropriate amount of Se enhanced the activity of glutathione peroxidase and the oxidizing ability of rice roots significantly, reduced the concentration of MDA, increased 1000-grain weight of rice, F = 26.96**, decreased empty and blighted grain rate, increased the rice yield, F = 11.53**, and enhanced the rice resistance under ferrous stress.
基金Project(2010ZC051)supported by the Natural Science Foundation of Yunnan Province,ChinaProject(2009-041)supported by Analysis and Testing Foundation from Kunming University of Science and Technology,ChinaProject(14118245)supported by the Starting Research Fund from Kunming University of Science and Technology,China
文摘A novel synthesis of LiFePO4/C from Fe2O3 with no extra carbon or carbon-containing reductant was introduced: Fe2O3 (+NH4H2PO4)→Fe2P2O7(+Li2CO3+glucose)→LiFePO4/C. X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were utilized to characterize relevant products obtained in the synthetic procedure. The reaction of Fe2P2O7 and Li2CO3 was investigated by thermo-gravimetric and differential thermal analysis (TGA-DTA). Fe2O3 is completely reduced to Fe2P2O7 by NH4H2PO4 at 700 ℃ and Fe2P2O7 fully reacts with Li2CO3 to form LiFePO4 in the temperature range of 663.4-890 ℃. The primary particles of LiFePO4/C samples prepared at 670, 700 and 750 ℃ respectively exhibit uniform morphology and narrow size distribution, 0.5-3 μm for those obtained at 670 and 700 ℃ and 0.5-5 μm for those obtained at 750 ℃. LiFePO4/C (carbon content of 5.49%, mass fraction) made at 670 ℃ shows an appreciable average capacity of 153.2 mA·h/g at 0.1C in the first 50 cycles.
基金Projects(51804146,51964029,51664030,51564030)supported by the National Natural Science Foundation of ChinaProject(2018YFC1900402)supported by the National Key Research and Development Program of ChinaProject supported by the Analysis and Testing Center of Kunming University of Science and Technology,China
文摘The transformation behavior of ferrous sulfate was examined during hematite precipitation for iron removal in hydrometallurgical zinc.Specifically,the effects of the method used for oxygen supply(pre-crystallization or pre-oxidation of ferrous sulfate)and temperature(170–190℃)on the redissolution and oxidation–hydrolysis of ferrous sulfate were studied.The precipitation characteristics and phase characterization of the hematite product were investigated.The results showed that the solubility of ferrous sulfate was considerably lower at elevated temperatures.The dissolution behavior of ferrous sulfate crystals was influenced by both the concentrations of free acid and zinc sulfate and the oxydrolysis of ferrous ions.Rapid oxydrolysis of ferrous ions may serve as the dissolution driving force.Hematite precipitation proceeded via the following sequential steps:crystallization,redissolution,oxidation,and precipitation of ferrous sulfate.The dissolution of ferrous sulfate was slow,which helped to maintain a low supersaturation environment,thereby affording the production of high-grade hematite.
基金Supported by the National Natural Science Foundation of China(21536009)Science and Technology Plan Projects of Shaanxi Province(2017ZDCXL-GY-10-03)
文摘Nitric oxide (NO) removal and sulfur dioxide (SO2) removal by sodium persulfate (Na2S2O8) were studied in a Bubble Column Reactor. The proposed reaction pathways of NO and SO2 removal are discussed. The effects of temperatures (35-90℃), Na25208 (0.05-0.5 mol·L-1), FeSO4 (0.5-5.0 m mol·L-1) and H2O2 (0.25 mol·L-1) on NO and SO2 removal were investigated. The results indicated that increased persulfate concentration led to increase in NO removal at various temperatures. SO2 was almost completely removed in the temperature range of 55-85 ℃. Fe2 + accelerated persulfate activation and enhanced NO removal efficiency. At 0.2 mol· L- 1 Na2S2O8 and 0.5-1.0 mmol· L-1Fe2 +, NO removal of 93.5%-99% was obtained at 75-90 ℃, SO2 removal was higher than 99% at all temperatures. The addition of 0.25 mol. L i H202 into 0.2 mol·L-1· Na2S2O8 solution promoted NO removal efficiency apparently until utterly decomposition of H2O2, the SO2 removal was as high as 98.4% separately at 35 ℃ and 80 ℃.
基金supported by the National Natural Science Foundation of China(Grant No.U1402234)the Guangxi Scientific Research and Technology Development Plan(Grants No.GuikeAB16380287 and GuikeAB17129025)+2 种基金the Public Welfare Fund of the Ministry of Environmental Protection of China(Grant No.201509049)the Program of International S & T Cooperation(Grant No.2016YFE0130700)the Fund of the General Research Institute for Nonferrous Metals(Grants No.53321 and 53348)
文摘The effect of hydraulic retention time (HRT) and pH on the biooxidation of ferrous iron during simulated acid mine drainage (AMD) treatment was investigated.The simulated AMD was highly acidic (pH 2.5), rich in iron (about 1700 mg/L) and copper (about 200 mg/L), and contained high concentrations of sulfate (about 4700 mg/L).The biooxidation of ferrous iron was studied in a laboratory-scale upflow packed bed bioreactor (PBR).The HRT was shortened stepwise from 40 h to 20 h, 13 h, and 8 h under the acidic environment at a pH value of 2.2.Then, the influent pH value was changed from 2.2 to 1.2 at a constant suitable HRT.Physiochemical and microbial community structure analyses were performed on water samples and stuffing collected from the bioreactor under different conditions.The results indicate that the efficiency of ferrous iron oxidation gradually decreased with the decrease of HRT, and when the HRT exceeded 13 h, ferrous iron in AMD was almost completely oxidized.In addition, the best efficiency of ferrous iron oxidation was achieved at the influent pH value of 1.8.Microbial community structure analyses show that Leptospirillum is the predominant genus attached in the bioreactor, and low influent pH values are suitable for the growth of Leptospirillum.
文摘This paper introduces a brazing process between Al2O3 ceramic and Invar alloy.Al2O3 can be brazed with Invar effectively.The interfacial structure of Al2O3/Invar joint can be expressed as:Invar/Ag(s,s)+Cu(s,s)+Fe2Ti(zone Ⅰ)/Ag(s,s)+Cu(s,s)+Fe2Ti+NiTi+Cu3Ti(zone Ⅱ)/Ag(s,s)+Cu(s,s)+Cu2Ti+Al(s,s)+TiC+TiO(zone Ⅲ)/Al2O3.The maximum shear strength of 139 MPa was measured for as-brazed Al2O3/Invar joint brazed at 850℃ for 25 min or 900℃ for 15 min.
基金Project(2010B050200007)supported by the Foundation of Science and Technology Planning Project of Guangdong Province,ChinaProject(2011ZM0054)supported by the Fundamental Research Funds for the Central Universities,China+1 种基金Project(2011K0013)supported by the Research Fund Program of Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology,ChinaProject(2012)supported by the Research Funds of Guangdong Provincial Key Laboratory of Atmospheric environment and Pollution Control,China
文摘In the interest of accelerating aniline degradation, Fe2+ and chelated Fe2+ activated persulfate oxidations were investigated in neutral pH condition. Three kinds of chelating agents were selected including citric acid, oxalic acid and ethylenediamine tetraaceatate(EDTA) to maintain available Fe2+. The results indicate that the concentration of chelating agent and ferrous ion didn't follow a linear relationship with the degradation rate of aniline. A 1/1 ratio of chelating agent/Fe2+ results in a higher degradation rate compared to the results by other ratios. The oxidation enhancement factor using oxalic acid was found to be relatively low. In contrast, citric acid is more suitable chelating agent in the ferrous iron activated persulfate system and aniline exhibits a highest degradation with a persulfate/Fe2+/citric acid/aniline molar ratio of 50/25/25/1 compared to other molar ratios.