期刊文献+
共找到1,175篇文章
< 1 2 59 >
每页显示 20 50 100
Strain-Insensitive Fiber Bragg Grating Composite Structure for Wide-Range Temperature Sensing
1
作者 Pingyu Zhu Tingyu Huang +5 位作者 Sheng Fan Yukun Yan Bo Peng Danli Xiong Shuai Zhang Marcelo A.Soto 《Journal of Dynamics, Monitoring and Diagnostics》 2024年第3期199-206,共8页
This paper reports on the design,fabrication,and temperature strain sensing performance of a fiber Bragg grating composite structure for surface mounted temperature measurements over a wide temperature range,with high... This paper reports on the design,fabrication,and temperature strain sensing performance of a fiber Bragg grating composite structure for surface mounted temperature measurements over a wide temperature range,with highly reduced strain cross-sensitivity.The fiber Bragg grating sensor is encapsulated in a polyimide tube filled with epoxy resin,forming an arc-shaped cavity.This assembly is then placed between two layers of glass fiber prepreg with a flexible pad in between and cured into shape.Experimental results,supported by finite element simulations,demonstrate an enhanced temperature sensitivity is 26.3 pm/°C over a wide temperature range of–30°C to 70°C,and high strain transfer isolation of about 99.65%. 展开更多
关键词 composite structure fiber bragg grating temperature sensing
下载PDF
Monitoring shear deformation of sliding zone via fiber Bragg grating and particle image velocimetry
2
作者 Deyang Wang Honghu Zhu +3 位作者 Guyu Zhou Wenzhao Yu Baojun Wang Wanhuan Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期231-241,共11页
Monitoring shear deformation of sliding zones is of great significance for understanding the landslide evolution mechanism,in which fiber optic strain sensing has shown great potential.However,the cor-relation between... Monitoring shear deformation of sliding zones is of great significance for understanding the landslide evolution mechanism,in which fiber optic strain sensing has shown great potential.However,the cor-relation between strain measurements of quasi-distributed fiber Bragg grating(FBG)sensing arrays and shear displacements of surrounding soil remains elusive.In this study,a direct shear model test was conducted to simulate the shear deformation of sliding zones,in which the soil internal deformation was captured using FBG strain sensors and the soil surface deformation was measured by particle image velocimetry(PIV).The test results show that there were two main slip surfaces and two secondary ones,developing a spindle-shaped shear band in the soil.The formation of the shear band was successfully captured by FBG sensors.A sinusoidal model was proposed to describe the fiber optic cable deformation behavior.On this basis,the shear displacements and shear band widths were calculated by using strain measurements.This work provides important insight into the deduction of soil shear deformation using soil-embedded FBG strain sensors. 展开更多
关键词 LANDSLIDE Shear band fiber bragg grating(FBG) Particle image velocimetry(PIV) Sinusoidal model strain‒displacement proportional COEFFICIENT
下载PDF
Irradiation effect on strain sensitivity coefficient of strain sensing fiber Bragg gratings 被引量:3
3
作者 金靖 林松 宋凝芳 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第1期254-259,共6页
The effect of irradiation on the strain sensitivity coefficient of strain sensing fiber Bragg gratings (FBGs) has been investigated through experiments. FBGs were fabricated in single mode fibers with 3 tool% Ge-con... The effect of irradiation on the strain sensitivity coefficient of strain sensing fiber Bragg gratings (FBGs) has been investigated through experiments. FBGs were fabricated in single mode fibers with 3 tool% Ge-concentration in the core and with a H2-1oading treatment. In experiments, the FBGs were subjected to y-radiation exposures using a Co6~ source at a dose-rate of 25 Gy/min up to a total dose of 10.5 kGy. The GeO defect in fiber absorbs photons to form a GeE' defect; the interaction with H2 is a probable reason for the y-radiation sensitivity of gratings written in hydrogen loaded fibres, The effect mechanism of radiation on the strain sensitivity coefficient is similar to that of radiation on the temperature sensitivity coefficient. Radiation affects the effective index neff, which results in the change of the thermo-optic coefficient and the strain-optic coefficient. Irradiation can change the strain sensitivity coefficient of FBGs by 1.48%-2.71%, as well as changing the Bragg wavelength shift (BWS) by 22 pm-25 pm under a total dose of 10.5 kGy. Our research demonstrates that the effect of irradiation on the strain sensitivity coefficient of FBG is small and that strain sensing FBGs can work well in the radiation environment. 展开更多
关键词 fiber bragg grating irradiation effect strain sensitivity coefficient
原文传递
Fiber Bragg Grating Strain Sensing Detecting Multi-Crack Damages under Vibrating Status
4
作者 Pei Luo 《Optics and Photonics Journal》 2017年第8期7-13,共7页
The multi-crack damages modal of simple supported beam has been build, at the vibrating status, the multi-damage detecting method of simple supported beam measured by fiber Bragg grating strain sensing array has been ... The multi-crack damages modal of simple supported beam has been build, at the vibrating status, the multi-damage detecting method of simple supported beam measured by fiber Bragg grating strain sensing array has been studied. From 0 hz to 200 hz, using exciter vibrating simple supported beam, with different damages, resonant frequency of simple supported beam has changed. So, when the damage appears in simple supported beam, the local rigidity will decrease, the resonant frequency of simple supported beam will be affected, the damage status of simple supported beam have been determined by this. The experimental result indicates that the resonant frequency of simple supported beam has changed when there is no damage, one damage, two damages, three damages on simple supported beam. According to this, the fiber Bragg grating strain sensing array can detect multi-crack damage of simple supported beam under vibrating status. 展开更多
关键词 Vibration fiber bragg grating strain sensing array Simple SUPPORTED Beam Damage Detection RESONANT Frequency
下载PDF
Structure Damage Identification via Fiber Grating Strain Sensing Array Detecting and Wavelet Analysis
5
作者 Pei Luo 《Optics and Photonics Journal》 2018年第9期301-308,共8页
The measuring method of structure damage during vibrating has been developed by applying simple supported beam as object of study, fiber Bragg grating strain sensing array as the measuring method, and wavelet package ... The measuring method of structure damage during vibrating has been developed by applying simple supported beam as object of study, fiber Bragg grating strain sensing array as the measuring method, and wavelet package analysis as signal extracting tools. The damage data of simple supported beam at vibrating state has been collected. The damage characteristic indexes have been extracted based on analyzing and handling the damage data with wavelet analysis. The experiment shows that fiber Bragg grating strain sensing array can sensitively measure the experimental data of simple supported beam at vibrating state. The fiber Bragg grating strain sensing array measuring is a new method in dynamic measurement. 展开更多
关键词 fiber grating strain sensing array WAVELET PACKAGE Analysis Simple SUPPORTED Beam Cracks Detecting Vibration
下载PDF
Novel Apodized Fiber Bragg GratingApplied for Medical Sensors:Performance Investigation
6
作者 Ramya Arumugam Ramamoorthy Kumar +3 位作者 Samiappan Dhanalakshmi Khin Wee Lai Lei Jiao Xiang Wu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第4期301-323,共23页
Sensors play an important role in shaping and monitoring human health.Exploration of methods to use Fiber Bragg Grating(FBG)with enhanced sensitivity has attracted great interest in the field of medical research.In th... Sensors play an important role in shaping and monitoring human health.Exploration of methods to use Fiber Bragg Grating(FBG)with enhanced sensitivity has attracted great interest in the field of medical research.In this paper,a novel apodization function is proposed and performance evaluation and optimization of the same have been made.A comparison was conducted between various existing apodization functions and the proposed one based on optical characteristics and sensor parameters.The results evince the implementation of the proposed apodization function for vital sign measurement.The optical characteristics considered for evaluation are Peak Resonance Reflectivity level,Side Lobes Reflectivity level and FullWidth HalfMaximum(FWHM).The proposed novel apodization novel function has better FWHM,which is narrower than the FWHM of uniform FBG.Sensor characteristics like a quality parameter,detection accuracy and sensitivity also show improvement.The proposed novel apodization function is demonstrated to have a better shift in wavelength in terms of temperature and pulse measurement than the existing functions.The sensitivity of the proposed apodized function is enhanced with a Poly-dimethylsiloxane coating of varying thickness,which is 6 times and 5.14 times greater than uniform Fiber Bragg grating and FBG with the proposed novel apodization function,respectively,enhancing its utilization in the field of medicine. 展开更多
关键词 fiber bragg grating APODIZATION optical sensing TEMPERATURE strain sensitivity
下载PDF
Measurement of Temperature and Residual Strain during Fatigue of a CFRP Composite Using Fiber Bragg Grating Sensors 被引量:2
7
作者 SHEN Xiaoyan LIN Yuchi WANG Wei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第3期364-368,共5页
Fatigue behaviour has important implications for engineering composite structures in sectors ranging from automotive to aerospace. Optical sensing technology displays excellent performance in these fields for monitori... Fatigue behaviour has important implications for engineering composite structures in sectors ranging from automotive to aerospace. Optical sensing technology displays excellent performance in these fields for monitoring. In this paper, temperature and residual strain during fatigue of a carbon fiber reinforced polymer(CFRP) are investigated. Four autoclaved CFRP beam specimens, with fiber Bragg grating(FBG) sensors and thermocouples embedded at selected locations, are subjected to three-point bending cyclic loading on the BOSE testing machine for fatigue testing. Thennocouples are used to measure the temperature while FBGs can sense the temperature and strain as well. Seven tests in total are conducted at different frequencies, and each test lasts for several days. From the experimental results, transient steep peaks of temperature increases (up to 2.3℃) are discovered at the beginning of the load. The following constant temperature increments are around 1.0℃, which is not relevant to frequencies from 0.1 Hz to 20 Hz and suspected due to fatigue. Residual strains of 1×10^-5-2×10^-5 during fatigue, fading away rapidly when unloading, are also reported. Embedded FBGs here are validated to sense temperature and strains in composite structures, which demonstrates promising potentials in structure monitoring fields. CFRP are verified to have an excellent performance during fatigue with low temperature increase and residual strain. 展开更多
关键词 fatigue temperature residual strain FREQUENCY CFRP composite embedded fiber bragg grating
下载PDF
Strain Transfer Mechanism of Grating Ends Fiber Bragg Grating for Structural Health Monitoring 被引量:4
8
作者 Guang Chen Keqin Ding +2 位作者 Qibo Feng Xinran Yin Fangxiong Tang 《Structural Durability & Health Monitoring》 EI 2019年第3期289-301,共13页
The grating ends bonding fiber Bragg grating(FBG)sensor has been widely used in sensor packages such as substrate type and clamp type for health monitoring of large structures.However,owing to the shear deformation of... The grating ends bonding fiber Bragg grating(FBG)sensor has been widely used in sensor packages such as substrate type and clamp type for health monitoring of large structures.However,owing to the shear deformation of the adhesive layer of FBG,the strain measured by FBG is often different from the strain of actual matrix,which causes strain measurement errors.This investigation aims at improving the measurement accuracy of strain for the grating ends surface-bonded FBG.To fulfill this objective,a strain transfer equation of the grating ends bonding FBG is derived,and a theoretical model of the average strain transfer from the matrix to the optical fiber is developed.Moreover,parameters that influence the average strain transfer rate from the matrix to the optical fiber are analyzed.A selection scheme of bonding parameters by numerical simulation is provided,which is significantly advantageous over that of the grating bonding FBG.The theoretical equation is verified by finite element method(FEM).Compared with the existing model,the proposed model has higher measurement accuracy.Experimental tests are performed to validate the effectiveness of the proposed model on the equalintensity cantilever beam,whose surface is attached to the bare FBG with grating ends bonding and strain gauge by using epoxy glue.The results show that there is a great agreement between the outcome of the bare FBG and that of the strain gauge,and the corrected strain is closer to the true strain.The proposed model provides a theoretical basis for the design of the grating ends surface-bonded FBG strain sensor for health monitoring of large structures. 展开更多
关键词 Structural health monitoring grating ends bonding fiber bragg grating the average strain transfer shear-lag theory
下载PDF
Fiber Grating-Based Strain Sensor Array for Health Monitoring of Pipelines 被引量:1
9
作者 Hui Wang Songyou Li +2 位作者 Lei Liang Gang Xu Bin Tu 《Structural Durability & Health Monitoring》 EI 2019年第4期347-359,共13页
Pipelines are one of the most important modern energy transportation methods,used especially for the transportation of certain dangerous energy media materials such as crude oil,natural gas,and chemical raw materials.... Pipelines are one of the most important modern energy transportation methods,used especially for the transportation of certain dangerous energy media materials such as crude oil,natural gas,and chemical raw materials.New requirements have been put forward for the health monitoring and early security warning of pipelines because of the large-scale and complicated development trend of the pipe network system.To achieve an accurate assessment of the health conditions of pipeline infrastructure,obtaining as many precise operating parameters as possible,particularly at some critical parts of the pipeline,is necessary.Therefore,a novel type of fiber grating strain sensor array is proposed herein to monitor the pipeline hoop strain.The sensor utilizes fiber grating characteristics such as light weight,corrosion resistance,remote transmission,and strong environmental adaptability.The fiber containing the grating measurement points is implanted into the composite material to complete the sensitization encapsulation and protection of the bare fiber grating.The design of the sensor array fulfills the requirements for monitoring pipeline mass data,making it easy to form a pipeline health monitoring sensor network.The sensor sensitivity is researched by using a combination of theoretical and experimental analysis.A sensitivity test,as well as linearity and stability tests,are performed on the sensor.The experimental results show that the average sensitivity of the sensor is 14.86 pm/με,and the error from the theoretical calculation analysis value is 8.75%.Due to its high reliability,good linear response and long-term stability,and the ability to reflect the exact strain change of the outer wall of the pipeline,the designed sensor can support longterm online pipeline monitoring.The fiber grating sensor array network has successfully realized the monitoring of the pipeline’s internal operation by using external strain changes.In addition to the performance benefits,there are other merits associated with the applicability of the sensor namely simple structure,compact size,manufacturing ease,and exterior installation ease. 展开更多
关键词 strain sensor array fiber grating composite material monitoring pipeline
下载PDF
Modified simulated annealing evolutionary algorithm for fully distributed fiber Bragg grating temperature sensing
10
作者 陈娜 李承林 +4 位作者 陈振宜 庞拂飞 曾祥龙 孙晓岚 王廷云 《Journal of Shanghai University(English Edition)》 CAS 2011年第1期58-62,共5页
In this paper, we present a simple and fast spectra inversion method to reconstruct the temperature distribution along single fiber Bragg grating (FBC) temperature sensor. This is a fully distributed sensing method ... In this paper, we present a simple and fast spectra inversion method to reconstruct the temperature distribution along single fiber Bragg grating (FBC) temperature sensor. This is a fully distributed sensing method based on the simulated annealing evolutionary (SAE) algorithm. Several modifications are made to improve the algorithm efficiency, including choosing the most superior chromosome, setting up the boundary of every gene according to the density of resonance peaks of the reflection spectrum, and dynamically modifying the boundary with the algorithm running. Numerical simulation results show that both the convergence rate and the fluctuation are significantly improved. A high spat-ial temperature resolution of 0.25 mm has been achieved at the time cost of 86 s. 展开更多
关键词 fiber bragg grating (FBG) spectrum inversion algorithm fully distributed temperature sensing
下载PDF
Fiber Bragg Grating Strain Rosette
11
作者 谢秀端 Anand Asundi 《实验力学》 CSCD 北大核心 2006年第1期77-86,共10页
In this paper a Fiber Bragg Grating (FBG) Strain Rosette is designed, developed and tested. Traditional FBGs measure strain in only one direction. However, in-plane strain at a point consists of two normal strains and... In this paper a Fiber Bragg Grating (FBG) Strain Rosette is designed, developed and tested. Traditional FBGs measure strain in only one direction. However, in-plane strain at a point consists of two normal strains and one shear strain. Hence a FBG strain rosette needs to be designed. The sensing principle of FBGs as a strain and temperature sensor and fundamental principles of strain transformation and strain gage rosettes are discussed.FBG strain rosettes are fabricated and embedded in two materials namely, Silicon Gel RTV 146-9 and Glass Fiber Composite Laminates. Experiments were conducted on the FBG strain rosette structures that were embedded in Silicon Gel (RTV 146-9). Initial findings from the experiments as well as preferred embedding material are presented. 展开更多
关键词 光纤布拉格光栅 布拉格波长 应变转化 应变片花 玻璃纤维
下载PDF
Effectiveness of Fiber Bragg Grating monitoring in the centrifugal model test of soil slope under rainfall conditions 被引量:3
12
作者 LI Long-qi JU Neng-pan GUO Yong-xing 《Journal of Mountain Science》 SCIE CSCD 2017年第5期936-947,共12页
Centrifugal model testsare playing an increasingly importantrolein investigating slope characteristics under rainfall conditions. However, conventional electronic transducers usually fail during centrifugal model test... Centrifugal model testsare playing an increasingly importantrolein investigating slope characteristics under rainfall conditions. However, conventional electronic transducers usually fail during centrifugal model tests because of the impacts of limitedtest space, high centrifugal force, and presence of water, with the result that limited valid data is obtained. In this study, Fiber Bragg Grating(FBG) sensing technology is employed in the design and development of displacement gauge, an anchor force gauge and an anti-slide pile moment gauge for use on centrifugal model slopes with and without a retaining structure. The two model slopes were installed and monitored at a centrifugal acceleration of 100 g. The test results show that the sensors developed succeed in capturing the deformation and retaining structure mechanical response of the model slopes during and after rainfall. The deformation curvefor the slope without retaining structure shows a steepresponse that turns gradualfor the slope with retaining structure. Importantly, for the slope with the retaining structure, results suggest that more attention be paid to increase of anchor force and antislide pile moment during rainfall. This study verifies the effectiveness of FBG sensing technology in centrifuge research and presents a new and innovative method for slope model testing under rainfall conditions. 展开更多
关键词 fiber bragg grating sensing technology Centrifugal model test Soil slope Rainfall conditions Slope displacement
原文传递
Engineering approach to in-situ bridge health monitoring with fiber bragg gratings 被引量:3
13
作者 武湛君 张博明 +2 位作者 万里冰 周智 欧进萍 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2006年第5期588-594,共7页
In this presentation the feasibility and capability of fiber Bragg gratings (FBG) employed in bridge health monitoring are demonstrated on a real bridge. FBG' s wavelength shift depending on strain variance has bee... In this presentation the feasibility and capability of fiber Bragg gratings (FBG) employed in bridge health monitoring are demonstrated on a real bridge. FBG' s wavelength shift depending on strain variance has been tested. The technique of FBG installation on bridges has been developed. 12 FBG strain sensors and 3 temperature sensors have been successfully embedded in the prestressed concrete box girder during the construction of Heilongjiang Hulan River Bridge. The prestressing tension process and quasi-static loading process of the girder were monitored with those sensors before it was installed onto the bridge. After the bridge was completed, the FBG sensors embedded have been utilized to monitor the strain shift of the beam under quasi-static load, traffic load and temperature. The results show that the traffic fluxes, possible tatigue damage and deflection of the bridge can be revealed conveniently through strain measurements with these FBG sensors, which provide key information for structural health diagnosis. The fact that the FBG strain sensors have withstood the ordeal of harsh construction process and lasted for more than one year proves that their durability and stability can satisfy the requirements for bridge health monitoring. It is also shown that the FBG strain sensor is more adaptive to long-term structural health monitoring than the electric resistance strain gauge. 展开更多
关键词 fiber bragg gratings fiber optic sensors BRIDGE strain structural health monitoring
下载PDF
Study on rock deformation monitoring using fiber Bragg grating in simulation experiment 被引量:4
14
作者 柴敬 魏世明 刘金瑄 《Journal of Coal Science & Engineering(China)》 2006年第2期30-33,共4页
Presented the fiber Bragg grating (FBG) sensors for rock strain monitoring in the 1.2 m long plane stress model of the simulation experiment. In the past, for the lack of appropriate technique to measure the deforma... Presented the fiber Bragg grating (FBG) sensors for rock strain monitoring in the 1.2 m long plane stress model of the simulation experiment. In the past, for the lack of appropriate technique to measure the deformation of rock structures, the measurement of deflection was restricted to just a few discrete points along rock, and the measuring points were limited to the location installed with displacement transducers. We developed a method to monitor the deformation of rock structures using fiber optical Bragg grating strain sensors. The sensors were embedded in rock layers of simulation experiment before the materials were put in. These sensors were then used to monitor the experienced strain with different face advancing distance. The test results indicate that, if properly installed, FBG sensors can survive under severe conditions associated with embedment process and yield accurate measurements of strains response. At the same time, we make comparisons of the data obtained by FBG sensors with those by centesimal gauge. The interest in FBG sensors was motivated by the potential advantages that they can offer more than existing sensing technologies. 展开更多
关键词 fiber bragg grating (FBG) simulation experiment rock layers SENSORS strain
下载PDF
Temperature-and Strain-Compensated Directional Curvature Sensor Based on Bragg Gratings in Three-Core Fiber with Bridged Waveguides
15
作者 Wu Zhifang Wei Yefen +4 位作者 Lin Jing Wang Hupo Huang Ruimin Wang Xiaoyan Pu Jixiong 《中国激光》 EI CAS CSCD 北大核心 2024年第18期82-91,共10页
Fiber-based curvature sensors,especially those capable of discerning the direction of curvature,have attracted more and more interest due to their promising applications in structural health monitoring,high-precision ... Fiber-based curvature sensors,especially those capable of discerning the direction of curvature,have attracted more and more interest due to their promising applications in structural health monitoring,high-precision measurement,medical and biological diagnosis-treat instruments,and so on.Here,we propose and demonstrate a compact directional curvature sensor that comprises two bridged waveguides and three Bragg gratings in a section of three-core fiber(TCF).Both the waveguides and gratings are integrated by femtosecond laser micromachining method.The waveguides,connecting the TCF outer cores to the lead-in single-mode fiber core,function as beam couplers to realize simultaneous interrogation of all three gratings without any separate fan-in/out component.Owing to the spatial specificity,the outer-core gratings exhibit high and direction-dependent sensitivity to curvature,whereas the central-core grating is nearly insensitive to curvature but shows similar sensitivities to ambient temperature and axial strain as the outer-core gratings.It can be used to compensate the cross impact of temperature and strain when the outer-core gratings are applied for curvature detection.Moreover,the wavelength interval between two outer-core gratings is also proposed as an indicator for curvature sensing.It features with a much higher sensitivity to curvature and reduced sensitivities to temperature and axial strain.The corresponding maximum sensitivity to curvature is as high as 191.89 pm/m-1,while the sensitivities to temperature and strain are only 0.3 pm/℃and 0.0218 pm/με,respectively.Therefore,our proposed device provides a compact and robust all-infiber solution for directional curvature sensing.It not only offers high sensitivity and accuracy but also immunity to temperature and axial strain fluctuations,making it a promising tool for a wide range of applications. 展开更多
关键词 fiber optics fiber bragg grating femtosecond laser micromachining waveguide integration directional curvature sensing
原文传递
Dynamic Single/Dual-channel Filter with Tunable Fiber Bragg Gratings
16
作者 CHENXiao-feng DUGe 《Semiconductor Photonics and Technology》 CAS 2003年第1期4-7,共4页
The shift mechanism of Bragg wavelength with stress variation for a fiber grating is investigated in detail. The influence of strain change on reflection and bandpass is theoretically analyzed. By applying stress, the... The shift mechanism of Bragg wavelength with stress variation for a fiber grating is investigated in detail. The influence of strain change on reflection and bandpass is theoretically analyzed. By applying stress, the dynamic single/dual channel filter with tunable fiber Bragg gratings is achieved. 展开更多
关键词 fiber bragg grating strain Dynamic tunable
下载PDF
A Novel Temperature-Compensated, Intensity-Modulated Fiber Bragg Grating Sensor System
17
作者 Xin-Yong Dong Hwa-Yaw Tam 《Journal of Electronic Science and Technology of China》 2008年第4期434-437,共4页
An intensity-modulated, fiber Bragg grating (FBG) sensor system based on radio-frequency (RF) signal measurement is presented. The RF signal is generated at a photodetector by two modulated optical signals reflect... An intensity-modulated, fiber Bragg grating (FBG) sensor system based on radio-frequency (RF) signal measurement is presented. The RF signal is generated at a photodetector by two modulated optical signals reflected from the sensing FBG and a reference one. Bragg wavelength shift of the sensing FBG changes intensity of the RF signal by changing phase difference between the two optical signals, with temperature effect being compensated automatically by the reference FBG, Strain measurement with a maximum sensitivity of -0.34 μV/με has been achieved. 展开更多
关键词 Optical fiber sensing fiber bragg gratings INTENSITY-MODULATED strain.
下载PDF
Pure Bending Characteristic of Tilted Fiber Bragg Grating
18
作者 Bo Liu Yin-Ping Miao Hai-Bin Zhou Qi-Da Zhao 《Journal of Electronic Science and Technology of China》 2008年第4期470-473,共4页
a novel structure of the pure macro- bending sensor based on the tilted fiber Bragg grating (TFBG) is proposed. The TFBG located in the half circle with the different diameters is bent at a constant angle with respe... a novel structure of the pure macro- bending sensor based on the tilted fiber Bragg grating (TFBG) is proposed. The TFBG located in the half circle with the different diameters is bent at a constant angle with respect to the tilted grating planes. With the variations of the curvature, the core-mode resonance is unchanged and the transmission power of cladding modes detected by the photodiodes varies linearly with curvature, while the ghost mode changes by the form of two-order polynomial. So we can use the transmission power of ghost mode or other cladding modes to detect bending curvature as shape sensor. From a practical point of view, the sensor proposed here is simple, low cost and easy to implement. Moreover, it is possible to make a temperature-insensitive shape sensor due to the same temperature characteristic between the core mode and the cladding modes. 展开更多
关键词 Half circle optical fiber sensing purebending sensor tilted fiber bragg grating.
下载PDF
On-Chip Sub-Picometer Continuous Wavelength Fiber-Bragg-Grating Interrogator
19
作者 Yuan ZHUANG Jun ZOU +4 位作者 Jiqiang ZHANG Lu ZHANG Jiahe ZHANG Leixin MENG Qing YANG 《Photonic Sensors》 SCIE EI CSCD 2024年第1期73-84,共12页
Miniaturized fiber-Bragg-grating(FBG)interrogators are of interest for applications in the areas where weight and size controlling is important,e.g.,airplanes and aerospace or in-situ monitoring.An ultra-compact high-... Miniaturized fiber-Bragg-grating(FBG)interrogators are of interest for applications in the areas where weight and size controlling is important,e.g.,airplanes and aerospace or in-situ monitoring.An ultra-compact high-precision on-chip interrogator is proposed based on a tailored arrayed waveguide grating(AWG)on a silicon-on-insulator(SOI)platform.The on-chip interrogator enables continuous wavelength interrogation from 1544 nm to 1568 nm with the wavelength accuracy of less than 1 pm[the root-mean-square error(RMSE)is 0.73 pm]over the whole wavelength range.The chip loss is less than 5 dB.The 1×16 AWG is optimized to achieve a large bandwidth and a low noise level at each channel,and the FBG reflection peaks can be detected by multiple output channels of the AWG.The fabricated AWG is utilized to interrogate FBG sensors through the center of gravity(CoG)algorithm.The validation of an on-chip FBG interrogator that works with sub-picometer wavelength accuracy in a broad wavelength range shows large potential for applications in miniaturized fiber optic sensing systems. 展开更多
关键词 fiber optic sensing on-chip interrogator arrayed waveguide grating center of gravity
原文传递
Development of a monitoring and warning system based on optical fiber sensing technology for masonry retaining walls and trees 被引量:2
20
作者 Peichen Wu Daoyuan Tan +4 位作者 Shaoqun Lin Wenbo Chen Jianhua Yin Numan Malik An Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第4期1064-1076,共13页
Hong Kong has a long history of applying masonry retaining walls to provide horizontal platforms and stabilize man-made slopes.Due to the sub-tropical climate,some masonry retaining walls are colonized by trees.Extrem... Hong Kong has a long history of applying masonry retaining walls to provide horizontal platforms and stabilize man-made slopes.Due to the sub-tropical climate,some masonry retaining walls are colonized by trees.Extreme weather,such as typhoons and heavy rains,may cause rupture or root failure of those trees,thus resulting in instability of the retaining walls.A monitoring and warning system for the movement of masonry retaining walls and sway of trees has been designed with the application of fiber Bragg grating(FBG)sensing technology.The monitoring system is also equipped with a solar power system and 4G data transmission devices.The key functions of the proposed monitoring system include remote sensing and data access,early warning,and real-time data visualization.The setups and working principles of the monitoring systems and related transducers are introduced.The feasibility,accuracy,serviceability and reliability of this monitoring system have been checked by in-site calibration tests and four-month monitoring.Besides,a two-level interface has been developed for data visualization.The monitoring results show that the monitored masonry retaining wall had a reversible movement up to 2.5 mm during the monitoring period.Besides,it is found that the locations of the maximum strain on trees depend on the crown spread of trees. 展开更多
关键词 Masonry retaining walls TREE Monitoring fiber bragg grating(FBG)sensing Warning system
下载PDF
上一页 1 2 59 下一页 到第
使用帮助 返回顶部