期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Filamentous Green Algae Reduce Walleye Fingerling Production in Earthen-Substrate Ponds 被引量:1
1
作者 Matthew J. Ward Ryan A. Rasmus 《Open Journal of Animal Sciences》 2021年第2期157-163,共7页
Reduced walleye (<i></span><i><span style="font-family:Verdana;">Sander vitreus</span></i><span style="font-family:Verdana;"></i></span><spa... Reduced walleye (<i></span><i><span style="font-family:Verdana;">Sander vitreus</span></i><span style="font-family:Verdana;"></i></span><span style="font-family:Verdana;">) fingerling production possibly related to nuisance filamentous green algae and overly</span></span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">stable water chemistry patterns is a concern in earthen-substrate ponds at Blue Dog State Fish Hatchery, South Dakota, USA. We describe the success of alfalfa (<i></span><i><span style="font-family:Verdana;">Medicago sativa</span></i><span style="font-family:Verdana;"></i></span><span style="font-family:Verdana;">) meal (AFM, n</span></span><span style="font-family:""> </span><span style="font-family:Verdana;">=</span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">2), alfalfa meal plus soybean (<i></span><i><span style="font-family:Verdana;">Glycine max</span></i><span style="font-family:Verdana;"></i></span><span style="font-family:Verdana;">) meal (AFM</span></span><span style="font-family:""> </span><span style="font-family:Verdana;">+</span><span style="font-family:""> </span><span style="font-family:Verdana;">SBM, n</span><span style="font-family:""> </span><span style="font-family:Verdana;">=</span><span style="font-family:""> </span><span style="font-family:Verdana;">1), and alfalfa meal plus liquid 28N:0P:0K (AFM</span><span style="font-family:""> </span><span style="font-family:Verdana;">+</span><span style="font-family:""> </span><span style="font-family:Verdana;">28:0:0, n</span><span style="font-family:""> </span><span style="font-family:Verdana;">=</span><span style="font-family:""> </span><span style="font-family:Verdana;">1) at achieving</span><span style="font-family:Verdana;"> walleye production objectives (>104,000 walleye and 32 kilograms/hectare) as well as the occurrence of filamentous green algae and the associated patterns of ammonia-nitrogen, pH, and dissolved oxygen in earthen-substrate ponds. Walleye production objectives were only achieved when filamentous green algae were absent preceding harvest, which occurred in one pond that received AFM and in the pond that received AFM</span><span style="font-family:""> </span><span style="font-family:Verdana;">+</span><span style="font-family:""> </span><span style="font-family:Verdana;">28:0:0.</span><span style="font-family:""> </span><span style="font-family:Verdana;">The presence of filamentous green algae preceding harvest was associated with higher dissolved oxygen and pH, whereas declines in these variables occurred when filamentous green algae were absent. Organic fertilizer alone exhibited low ammonia-nitrogen (<0.1 mg/L) despite the substitution of higher protein content soybean meal, but supplementation with 28:0:0 increased ammonia-nitrogen to 0.23 mg/L. These findings highlight the reduction in walleye fingerling production that occurred in the presence of filamentous green algae and the unpredictability of results when two earthen-substrate ponds are treated exactly the same with alfalfa meal. Achievement of walleye production objectives, lack of nuisance filamentous green algae, and promotion of</span><span style="font-family:""> </span><span style="font-family:Verdana;">favorable patterns in water chemistry warrant future experimentation with alfalfa meal supplemented with 28:0:0 in earthen-substrate ponds at this hatchery. 展开更多
关键词 filamentous Green algae WALLEYE Pond Culture
下载PDF
Freshwater snail and shrimp differentially affect water turbidity and benthic primary producers
2
作者 Yulun Guo Peiyu Zhang +1 位作者 Jianlin Chen Jun Xu 《Water Biology and Security》 2022年第1期34-40,共7页
Benthic macroinvertebrates play key roles in shallow aquatic ecosystems and can contribute substantially to aquatic food webs.However,how macroinvertebrates with different behaviors(for example,pertaining to locomotio... Benthic macroinvertebrates play key roles in shallow aquatic ecosystems and can contribute substantially to aquatic food webs.However,how macroinvertebrates with different behaviors(for example,pertaining to locomotion,foraging and burrowing)impact water quality and primary producers has not been fully explored.Here,we performed two consecutive microcosm experiments to test the effects of(1)macroinvertebrates with different behaviors(a low mobility scraper aquatic snail Bellamya aeruginosa and a high mobility shredder freshwater shrimp Macrobrachium nipponense)and(2)different shrimp biomasses on water clarity and the composition of benthic primary producers.The results showed that presence of snails significantly increased the biomass of filamentous green algae and decreased the biomass of periphyton.In contrast,presence of shrimp significantly decreased the biomass of filamentous green algae and increased the biomass of periphyton,and these effects were biomass dependent.Filamentous green algae disappeared when shrimp biomass reached 9.8 g m^(-2).No interactive effects of snail and shrimp presence were found.This could be attributed to different food preferences by the two consumers,with snails preferring periphyton(mainly diatoms)and shrimp preferring filamentous green algae.The presence of snails decreased water turbidity,while shrimp increased water turbidity,which showed a hump-shaped response to shrimp biomass with a peak at 24.2 g m^(-2).These results are likely because the snail is a low mobility grazer and can filter suspended particles,while the shrimp is a high mobility shredder with burrows,which can strongly disturb sediment.The decrease in water disturbance at high shrimp biomass might be due to food limitation,thus reducing burrowing and foraging activities.Neither snail nor shrimp affected the biomass of H.verticillata,while the biomass of V.spinulosa increased with shrimp biomass.The reason for this could be that shrimp increased nutrient availability and decreased the growth of filamentous green algae that compete with macrophytes.Our study demonstrated that different macroinvertebrates have complementary functions in benthic habitats;thus,maintaining macroinvertebrate diversity is important for shallow aquatic ecosystems.Furthermore,the freshwater shrimp M.nipponense could be a potential consumer to control filamentous green algal blooms in its native range,but their biomass should be taken into consideration. 展开更多
关键词 Aquatic plant ZOOBENTHOS filamentous algae MACROINVERTEBRATE MACROPHYTE PERIPHYTON Trophic interaction Water turbidity
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部