Mining operation, especially underground coal mining, always has the remarkable risks of ground control. Passive seismic velocity tomography based on simultaneous iterative reconstructive technique (SIRT) inversion ...Mining operation, especially underground coal mining, always has the remarkable risks of ground control. Passive seismic velocity tomography based on simultaneous iterative reconstructive technique (SIRT) inversion is used to deduce the stress redistribution around the longwall mining panel. The mining-induced microseismic events were recorded by mounting an array of receivers on the surface, above the active panel. After processing and filtering the seismic data, the three-dimensional tomography images of the p-wave velocity variations by SIRT passive seismic velocity tomography were provided. To display the velocity changes on coal seam level and subsequently to infer the stress redistribution, these three-dimensional tomograms into the coal seam level were sliced. In addition, the boundary element method (BEM) was used to simulate the stress redistribution. The results show that the inferred stresses from the passive seismic tomograms are conformed to numerical models and theoretical concept of the stress redistribution around the longwall panel. In velocity tomograms, the main zones of the stress redistribution arotmd the panel, including front and side abutment pressures, and gob stress are obvious and also the movement of stress zones along the face advancement is evident. Moreover, the effect of the advance rate of the face on the stress redistribution is demonstrated in tomography images. The research result proves that the SIRT passive seismic velocity tomography has an ultimate potential for monitoring the changes of stress redistribution around the longwall mining panel continuously and subsequently to improve safety of mining operations.展开更多
Discrete Tomography(DT)is a technology that uses image projection to reconstruct images.Its reconstruction problem,especially the binary image(0–1matrix)has attracted strong attention.In this study,a fixed point iter...Discrete Tomography(DT)is a technology that uses image projection to reconstruct images.Its reconstruction problem,especially the binary image(0–1matrix)has attracted strong attention.In this study,a fixed point iterative method of integer programming based on intelligent optimization is proposed to optimize the reconstructedmodel.The solution process can be divided into two procedures.First,the DT problem is reformulated into a polyhedron judgment problembased on lattice basis reduction.Second,the fixed-point iterativemethod of Dang and Ye is used to judge whether an integer point exists in the polyhedron of the previous program.All the programs involved in this study are written in MATLAB.The final experimental data show that this method is obviously better than the branch and bound method in terms of computational efficiency,especially in the case of high dimension.The branch and bound method requires more branch operations and takes a long time.It also needs to store a large number of leaf node boundaries and the corresponding consumptionmatrix,which occupies a largememory space.展开更多
In this paper, to investigate the influence of soil inhomogeneity on the bending of circular thinplates on elastic foundations, the static problem of circular thin plates on Gibson elasticfoundation is solved using an...In this paper, to investigate the influence of soil inhomogeneity on the bending of circular thinplates on elastic foundations, the static problem of circular thin plates on Gibson elasticfoundation is solved using an iterative method based on the modified Vlasov model. On the basisof the principle of minimum potential energy, the governing differential equations and boundaryconditions for circular thin plates on modified Vlasov foundation considering the characteristics ofGibson soil are derived. The equations for the attenuation parameter in bending problem are alsoobtained, and the issue of unknown parameters being difficult to determine is solved using theiterative method. Numerical examples are analyzed and the results are in good agreement withthose form other literatures. It proves that the method is practical and accurate. Theinhomogeneity of modified Vlasov foundations has some influence on the deformation andinternal force behavior of circular thin plates. The effects of various parameters on the bending ofcircular plates and characteristic parameters of the foundation are discussed. The modified modelfurther enriches and develops the elastic foundations. Relevant conclusions that are meaningful toengineering practice are drawn.展开更多
The present paper is devoted to a novel smoothing function method for convex quadratic programming problem with mixed constrains, which has important application in mechanics and engineering science. The problem is re...The present paper is devoted to a novel smoothing function method for convex quadratic programming problem with mixed constrains, which has important application in mechanics and engineering science. The problem is reformulated as a system of non-smooth equations, and then a smoothing function for the system of non-smooth equations is proposed. The condition of convergences of this iteration algorithm is given. Theory analysis and primary numerical results illustrate that this method is feasible and effective.展开更多
Cone penetration testing (CPT) is an extensively utilized and cost effective tool for geotechnical site characterization. CPT consists of pushing at a constant rate an electronic cone into penetrable soils and recordi...Cone penetration testing (CPT) is an extensively utilized and cost effective tool for geotechnical site characterization. CPT consists of pushing at a constant rate an electronic cone into penetrable soils and recording the resistance to the cone tip (q<sub>c</sub> value). The measured q<sub>c</sub> values (after correction for the pore water pressure) are utilized to estimate soil type and associated soil properties based predominantly on empirical correlations. The most common cone tips have associated areas of 10 cm<sup>2</sup> and 15 cm<sup>2</sup>. Investigators also utilized significantly larger cone tips (33 cm<sup>2</sup> and 40 cm<sup>2</sup>) so that gravelly soils can be penetrated. Small cone tips (2 cm<sup>2</sup> and 5 cm<sup>2</sup>) are utilized for shallow soil investigations. The cone tip resistance measured at a particular depth is affected by the values above and below the depth of interest which results in a smoothing or blurring of the true bearing values. Extensive work has been carried out in mathematically modelling the smoothing function which results in the blurred cone bearing measurements. This paper outlines a technique which facilitates estimating the dominant parameters of the cone smoothing function from processing real cone bearing data sets. This cone calibration technique is referred to as the so-called CPSPE algorithm. The mathematical details of the CPSPE algorithm are outlined in this paper along with the results from a challenging test bed simulation.展开更多
In this paper,the existence and uniqueness of iterative solutions to the boundary value problems for a class of first order impulsive integro-differential equations were studied. Under a new concept of upper and lower...In this paper,the existence and uniqueness of iterative solutions to the boundary value problems for a class of first order impulsive integro-differential equations were studied. Under a new concept of upper and lower solutions, a new monotone iterative technique on the boundary value problem of integro-differential equations was proposed. The existence and uniqueness of iterative solutions and the error estimation in certain interval were obtained.An example was also given to illustrate the results.展开更多
This paper deals with fractional integro-differential equations involving Hadamard fractional derivatives and nonlinear boundary conditions in an ordered Banach space. The nonlinearity is allowed to be singular with r...This paper deals with fractional integro-differential equations involving Hadamard fractional derivatives and nonlinear boundary conditions in an ordered Banach space. The nonlinearity is allowed to be singular with respect to time variable. Under some monotonicity conditions and noncompactness measure conditions, we use the method of coupled lower and upper L-quasisolutions associated with the mixed monotone iterative technique to investigate the existence of extremal L-quasisolutions. A unique solution between coupled lower and upper L-quasisolutions is also obtained. An example is given to illustrate our theoretical results. The results got in this paper are new and enrich the existing related work.展开更多
The objective of this paper is to develop monotone techniques for obtaining extremal solutions of initial value problem for nonlinear neutral delay differential equations.
In this paper, Aitken’s extrapolation normally applied to convergent fixed point iteration is extended to extrapolate the solution of a divergent iteration. In addition, higher order Aitken extrapolation is introduce...In this paper, Aitken’s extrapolation normally applied to convergent fixed point iteration is extended to extrapolate the solution of a divergent iteration. In addition, higher order Aitken extrapolation is introduced that enables successive decomposition of high Eigen values of the iteration matrix to enable convergence. While extrapolation of a convergent fixed point iteration using a geometric series sum is a known form of Aitken acceleration, it is shown that in this paper, the same formula can be used to estimate the solution of sets of linear equations from diverging Gauss-Seidel iterations. In both convergent and divergent iterations, the ratios of differences among the consecutive values of iteration eventually form a convergent (divergent) series with a factor equal to the largest Eigen value of the iteration matrix. Higher order Aitken extrapolation is shown to eliminate the influence of dominant Eigen values of the iteration matrix in successive order until the iteration is determined by the lowest possible Eigen values. For the convergent part of the Gauss-Seidel iteration, further acceleration is made possible by coupling of the extrapolation technique with the successive over relaxation (SOR) method. Application examples from both convergent and divergent iterations have been provided. Coupling of the extrapolation with the SOR technique is also illustrated for a steady state two dimensional heat flow problem which was solved using MATLAB programming.展开更多
This paper compares the variational iteration method(VIM),the Adomian decomposition method(ADM)and the Picard iteration method(PIM)for solving a system of first o rder n onlinear o rdinary d ifferential e quations(ODE...This paper compares the variational iteration method(VIM),the Adomian decomposition method(ADM)and the Picard iteration method(PIM)for solving a system of first o rder n onlinear o rdinary d ifferential e quations(ODEs).A unification of the concepts underlying these three methods is attempted by considering a very general iterative algorithm for VIM.It is found that all the three methods can be regarded as special cases of using a very general matrix of Lagrange multipliers in the iterative algorithm of VIM.The global variational iteration method is briefly reviewed,and further recast into a Local VIM,which is much more convenient and capable of predicting long term complex dynamic responses of nonlinear systems even if they are chaotic.展开更多
Deficiencies of the performance-based iterative learning control (ILC) for the non-regular systems are investigated in detail, then a faster control input updating and lifting technique is introduced in the design o...Deficiencies of the performance-based iterative learning control (ILC) for the non-regular systems are investigated in detail, then a faster control input updating and lifting technique is introduced in the design of performance index based ILCs for the partial non-regular systems. Two ldnds of optimal ILCs based on different performance indices are considered. Finally, simulation examples are given to illustrate the feasibility of the proposed learning controls.展开更多
How to accelerate the convergence speed and avoid computing the inversion of a Jacobian matrix is important in the solution of nonlinear algebraic equations(NAEs).This paper develops an approach with a splitting-linea...How to accelerate the convergence speed and avoid computing the inversion of a Jacobian matrix is important in the solution of nonlinear algebraic equations(NAEs).This paper develops an approach with a splitting-linearizing technique based on the nonlinear term to reduce the effect of the nonlinear terms.We decompose the nonlinear terms in the NAEs through a splitting parameter and then linearize the NAEs around the values at the previous step to a linear system.Through the maximal orthogonal projection concept,to minimize a merit function within a selected interval of splitting parameters,the optimal parameters can be quickly determined.In each step,a linear system is solved by the Gaussian elimination method,and the whole iteration procedure is convergent very fast.Several numerical tests show the high performance of the optimal split-linearization iterative method(OSLIM).展开更多
This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones a...This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones and iterative technique.展开更多
文摘Mining operation, especially underground coal mining, always has the remarkable risks of ground control. Passive seismic velocity tomography based on simultaneous iterative reconstructive technique (SIRT) inversion is used to deduce the stress redistribution around the longwall mining panel. The mining-induced microseismic events were recorded by mounting an array of receivers on the surface, above the active panel. After processing and filtering the seismic data, the three-dimensional tomography images of the p-wave velocity variations by SIRT passive seismic velocity tomography were provided. To display the velocity changes on coal seam level and subsequently to infer the stress redistribution, these three-dimensional tomograms into the coal seam level were sliced. In addition, the boundary element method (BEM) was used to simulate the stress redistribution. The results show that the inferred stresses from the passive seismic tomograms are conformed to numerical models and theoretical concept of the stress redistribution around the longwall panel. In velocity tomograms, the main zones of the stress redistribution arotmd the panel, including front and side abutment pressures, and gob stress are obvious and also the movement of stress zones along the face advancement is evident. Moreover, the effect of the advance rate of the face on the stress redistribution is demonstrated in tomography images. The research result proves that the SIRT passive seismic velocity tomography has an ultimate potential for monitoring the changes of stress redistribution around the longwall mining panel continuously and subsequently to improve safety of mining operations.
基金funded by the NSFC under Grant Nos.61803279,71471091,62003231 and 51874205in part by the Qing Lan Project of Jiangsu,in part by the China Postdoctoral Science Foundation under Grant Nos.2020M671596 and 2021M692369+2 种基金in part by the Suzhou Science and Technology Development Plan Project(Key Industry Technology Innovation)under Grant No.SYG202114in part by the Natural Science Foundation of Jiangsu Province under Grant No.BK20200989Postdoctoral Research Funding Program of Jiangsu Province.
文摘Discrete Tomography(DT)is a technology that uses image projection to reconstruct images.Its reconstruction problem,especially the binary image(0–1matrix)has attracted strong attention.In this study,a fixed point iterative method of integer programming based on intelligent optimization is proposed to optimize the reconstructedmodel.The solution process can be divided into two procedures.First,the DT problem is reformulated into a polyhedron judgment problembased on lattice basis reduction.Second,the fixed-point iterativemethod of Dang and Ye is used to judge whether an integer point exists in the polyhedron of the previous program.All the programs involved in this study are written in MATLAB.The final experimental data show that this method is obviously better than the branch and bound method in terms of computational efficiency,especially in the case of high dimension.The branch and bound method requires more branch operations and takes a long time.It also needs to store a large number of leaf node boundaries and the corresponding consumptionmatrix,which occupies a largememory space.
基金financially supported by the National Natural Science Foundation of China (Grant 51278420)the Natural Science Foundation of Shaanxi Province (Grant 2017JM5021)
文摘In this paper, to investigate the influence of soil inhomogeneity on the bending of circular thinplates on elastic foundations, the static problem of circular thin plates on Gibson elasticfoundation is solved using an iterative method based on the modified Vlasov model. On the basisof the principle of minimum potential energy, the governing differential equations and boundaryconditions for circular thin plates on modified Vlasov foundation considering the characteristics ofGibson soil are derived. The equations for the attenuation parameter in bending problem are alsoobtained, and the issue of unknown parameters being difficult to determine is solved using theiterative method. Numerical examples are analyzed and the results are in good agreement withthose form other literatures. It proves that the method is practical and accurate. Theinhomogeneity of modified Vlasov foundations has some influence on the deformation andinternal force behavior of circular thin plates. The effects of various parameters on the bending ofcircular plates and characteristic parameters of the foundation are discussed. The modified modelfurther enriches and develops the elastic foundations. Relevant conclusions that are meaningful toengineering practice are drawn.
文摘The present paper is devoted to a novel smoothing function method for convex quadratic programming problem with mixed constrains, which has important application in mechanics and engineering science. The problem is reformulated as a system of non-smooth equations, and then a smoothing function for the system of non-smooth equations is proposed. The condition of convergences of this iteration algorithm is given. Theory analysis and primary numerical results illustrate that this method is feasible and effective.
文摘Cone penetration testing (CPT) is an extensively utilized and cost effective tool for geotechnical site characterization. CPT consists of pushing at a constant rate an electronic cone into penetrable soils and recording the resistance to the cone tip (q<sub>c</sub> value). The measured q<sub>c</sub> values (after correction for the pore water pressure) are utilized to estimate soil type and associated soil properties based predominantly on empirical correlations. The most common cone tips have associated areas of 10 cm<sup>2</sup> and 15 cm<sup>2</sup>. Investigators also utilized significantly larger cone tips (33 cm<sup>2</sup> and 40 cm<sup>2</sup>) so that gravelly soils can be penetrated. Small cone tips (2 cm<sup>2</sup> and 5 cm<sup>2</sup>) are utilized for shallow soil investigations. The cone tip resistance measured at a particular depth is affected by the values above and below the depth of interest which results in a smoothing or blurring of the true bearing values. Extensive work has been carried out in mathematically modelling the smoothing function which results in the blurred cone bearing measurements. This paper outlines a technique which facilitates estimating the dominant parameters of the cone smoothing function from processing real cone bearing data sets. This cone calibration technique is referred to as the so-called CPSPE algorithm. The mathematical details of the CPSPE algorithm are outlined in this paper along with the results from a challenging test bed simulation.
基金National Natural Science Foundation of China(No.11271372)Hunan Provincial National Natural Science Foundation of China(No.12JJ2004)Central South University Graduate Innovation Project,China(No.2014zzts136)
文摘In this paper,the existence and uniqueness of iterative solutions to the boundary value problems for a class of first order impulsive integro-differential equations were studied. Under a new concept of upper and lower solutions, a new monotone iterative technique on the boundary value problem of integro-differential equations was proposed. The existence and uniqueness of iterative solutions and the error estimation in certain interval were obtained.An example was also given to illustrate the results.
文摘This paper deals with fractional integro-differential equations involving Hadamard fractional derivatives and nonlinear boundary conditions in an ordered Banach space. The nonlinearity is allowed to be singular with respect to time variable. Under some monotonicity conditions and noncompactness measure conditions, we use the method of coupled lower and upper L-quasisolutions associated with the mixed monotone iterative technique to investigate the existence of extremal L-quasisolutions. A unique solution between coupled lower and upper L-quasisolutions is also obtained. An example is given to illustrate our theoretical results. The results got in this paper are new and enrich the existing related work.
文摘The objective of this paper is to develop monotone techniques for obtaining extremal solutions of initial value problem for nonlinear neutral delay differential equations.
文摘In this paper, Aitken’s extrapolation normally applied to convergent fixed point iteration is extended to extrapolate the solution of a divergent iteration. In addition, higher order Aitken extrapolation is introduced that enables successive decomposition of high Eigen values of the iteration matrix to enable convergence. While extrapolation of a convergent fixed point iteration using a geometric series sum is a known form of Aitken acceleration, it is shown that in this paper, the same formula can be used to estimate the solution of sets of linear equations from diverging Gauss-Seidel iterations. In both convergent and divergent iterations, the ratios of differences among the consecutive values of iteration eventually form a convergent (divergent) series with a factor equal to the largest Eigen value of the iteration matrix. Higher order Aitken extrapolation is shown to eliminate the influence of dominant Eigen values of the iteration matrix in successive order until the iteration is determined by the lowest possible Eigen values. For the convergent part of the Gauss-Seidel iteration, further acceleration is made possible by coupling of the extrapolation technique with the successive over relaxation (SOR) method. Application examples from both convergent and divergent iterations have been provided. Coupling of the extrapolation with the SOR technique is also illustrated for a steady state two dimensional heat flow problem which was solved using MATLAB programming.
文摘This paper compares the variational iteration method(VIM),the Adomian decomposition method(ADM)and the Picard iteration method(PIM)for solving a system of first o rder n onlinear o rdinary d ifferential e quations(ODEs).A unification of the concepts underlying these three methods is attempted by considering a very general iterative algorithm for VIM.It is found that all the three methods can be regarded as special cases of using a very general matrix of Lagrange multipliers in the iterative algorithm of VIM.The global variational iteration method is briefly reviewed,and further recast into a Local VIM,which is much more convenient and capable of predicting long term complex dynamic responses of nonlinear systems even if they are chaotic.
基金supported by the National Natural Science Foundation of China (No.60774023)Hunan Provincial Natural Science Foundation (No.06JJ50141)
文摘Deficiencies of the performance-based iterative learning control (ILC) for the non-regular systems are investigated in detail, then a faster control input updating and lifting technique is introduced in the design of performance index based ILCs for the partial non-regular systems. Two ldnds of optimal ILCs based on different performance indices are considered. Finally, simulation examples are given to illustrate the feasibility of the proposed learning controls.
基金support provided by the Ministry of Science and Technology,Taiwan,ROC under Contract No.MOST 110-2221-E-019-044.
文摘How to accelerate the convergence speed and avoid computing the inversion of a Jacobian matrix is important in the solution of nonlinear algebraic equations(NAEs).This paper develops an approach with a splitting-linearizing technique based on the nonlinear term to reduce the effect of the nonlinear terms.We decompose the nonlinear terms in the NAEs through a splitting parameter and then linearize the NAEs around the values at the previous step to a linear system.Through the maximal orthogonal projection concept,to minimize a merit function within a selected interval of splitting parameters,the optimal parameters can be quickly determined.In each step,a linear system is solved by the Gaussian elimination method,and the whole iteration procedure is convergent very fast.Several numerical tests show the high performance of the optimal split-linearization iterative method(OSLIM).
文摘This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones and iterative technique.