期刊文献+
共找到2,136篇文章
< 1 2 107 >
每页显示 20 50 100
Impact on Soil Organic C and Total Soil N from Cool- and Warm-Season Legumes Used in a Green Manure-Forage Cropping System
1
作者 Clark B. Neely Francis M. Rouquette Jr. +3 位作者 Cristine L.S. Morgan Frank M. Hons William L. Rooney Gerald R. Smith 《Agricultural Sciences》 2024年第3期333-357,共25页
Annual forage legumes are important components of livestock production systems in East Texas and the southeastern US. Forage legumes contribute nitrogen (N) to cropping systems through biological N fixation, and their... Annual forage legumes are important components of livestock production systems in East Texas and the southeastern US. Forage legumes contribute nitrogen (N) to cropping systems through biological N fixation, and their seasonal biomass production can be managed to complement forage grasses. Our research objectives were to evaluate both warm- and cool-season annual forage legumes as green manure for biomass, N content, ability to enhance soil organic carbon (SOC) and soil N, and impact on post season forage grass crops. Nine warm-season forage legumes (WSL) were spring planted and incorporated as green manure in the fall. Forage rye (Secale cereale L.) was planted following the incorporation of WSL treatments. Eight cool-season forage legumes (CSL) were fall planted in previously fallow plots and incorporated as green manure in late spring. Sorghum-sudangrass (Sorghum bicolor x Sorghum bicolor var. sudanense) was planted over all treatments in early summer after forage rye harvest and incorporation of CSL treatments. Sorghum-sudangrass was harvested in June, August and September, and treatments were evaluated for dry matter and N concentration. Soil cores were taken from each plot, split into depths of 0 to 15, 15 to 30 and 30 to 60 cm, and soil C and N were measured using combustion analysis. Nylon mesh bags containing plant samples were buried at 15 cm and used to evaluate decomposition rate of above ground legume biomass, including change in C and N concentrations. Mungbean (Vigna radiata L. [Wilczek]) had the highest shoot biomass yield (6.24 t DM ha<sup>-1</sup>) and contributed the most total N (167 kg∙ha<sup>-1</sup>) and total C (3043 kg∙ha<sup>-1</sup>) of the WSL tested. Decomposition rate of WSL biomass was rapid in the first 10 weeks and very slow afterward. Winter pea (Pisum sativum L. spp. sativum), arrow leaf clover (Trifolium vesiculosum Savi.), and crimson clover (Trifolium incarnatum L.) were the most productive CSL in this trial. Austrian winter pea produced 8.41 t DM ha<sup>-1</sup> with a total N yield of 319 kg N ha<sup>-1</sup> and total C production of 3835 kg C ha<sup>-1</sup>. The WSL treatments had only small effects on rye forage yield and N concentration, possibly due to mineralization of N from a large SOC pool already in place. The CSL treatments also had only minimal effects on sorghum-sudangrass forage production. Winter pea, arrow leaf and crimson clover were productive cool season legumes and could be useful as green manure crops. Mungbean and cowpea (Vigna unguiculata [L.] Walp.) were highly productive warm season legumes but may include more production risk in green manure systems due to soil moisture competition. 展开更多
关键词 Annual Legumes Soil N Soil Organic C Green Manure Deer Browse forage cropping systems
下载PDF
Residual Effect of Biochar on Soil Properties and Yield of Maize (<i>Zea mays L.</i>) under Different Cropping Systems 被引量:1
2
作者 Sara, Z. Shah T. Shah 《Open Journal of Soil Science》 2018年第1期16-35,共20页
A field experiment was conducted to examine the residual influence of biochar applied previously to an established experiment at the Agriculture University Research Farm, Peshawar on soil properties and yield of maize... A field experiment was conducted to examine the residual influence of biochar applied previously to an established experiment at the Agriculture University Research Farm, Peshawar on soil properties and yield of maize crop during summer 2016. The experiment was established in RCB design with split plot arrangements having cropping systems (CS) in main plots and biochar (BC) in sub-plots. Cropping systems were: 1) wheat-mung bean;2) wheat-maize;3) chickpea-maize;and 4) chickpea-mung bean. During the past three seasons, each cropping system received biochar at 0, 40, 60 and 80 t&#183ha&#451 along with recommended dose of NPK in each season. For this study, maize was planted after chickpea and wheat in summer 2016. The results showed that grain yield, cobs weight and total N uptake of maize was significantly greater for chickpea-maize than for wheat-maize cropping system. Soil organic C was also significantly higher in soil under chickpea-maize than under wheat-maize cropping system. However, other yield components such as stover yield, harvest index and N concentration in grain and stover of maize and soil properties such as pH, EC and mineral N were non-significantly affected by cropping systems. With respect to residual effect of biochar grain yield of maize and bulk density of soil were maximum for treatment receiving biochar at 40 t&#183ha&#451 whereas cobs weight soil pH and mineral N were highest receiving biochar at 60 t&#183ha&#451. Moreover, N concentration in stover, N uptake and soil organic C were maximum for treatment receiving biochar at 80 t&#183ha&#451. However, stover yield, harvest index, N concentration in grain, and soil EC were non-significantly affected by biochar treatments. However interactions between CS × BC were significant for yield and yield parameters of maize and for soil properties (bulk density mineral N), while non-significant for harvest index, soil organic C, pH and EC. It was concluded that chickpea-maize cropping system performed better in terms of improving yield and yield components of maize and in improving soil properties. Application of biochar to previous crops also improved yield and yield parameters of the following maize as well as soil properties. Thus we recommend that legumes must be involved in cropping system for sustainable and higher productivity and improved soil properties. However, further studies are suggested to find out suitable dose of biochar for sustainable and economic crop productivity and soil fertility. 展开更多
关键词 BIOCHAR Residual Effect Soil Properties cropping systems YIELD and YIELD Components of MAIZE
下载PDF
Variation of Physical and Chemical Properties of Soils under Different Cropping Systems in the Watershed of Kpocomey, Southern Benin 被引量:1
3
作者 Alladassi Félix Kouelo Alohoutade Finagnon Mathieu +7 位作者 Avakoudjo Julien Akplo Tobi Moriaque Agodo Lambert Agonvinon Mahugnon Socrate Houngnandan Pascal Azontonde Hessou Anastase Amadji Guillaume Lucien Saïdou Aliou 《Open Journal of Soil Science》 2020年第11期501-517,共17页
Soils degradation is one of the constraints in food security achievement in Benin. This study aimed at assessing the effect of cropping systems and slope on soil physical and chemical properties in the watershed of Kp... Soils degradation is one of the constraints in food security achievement in Benin. This study aimed at assessing the effect of cropping systems and slope on soil physical and chemical properties in the watershed of Kpacomey located in the Aplahoué district. Soil samples were collected from three parallel transects along the slope. Sampling was carried out under different treatments combining cropping systems (Maize-Cassava, pure Palm grove, Palm grove-Maize-Cassava and Teak Plantation) along with slope levels (low slope, medium slope and high slope degree). The impact of cropping systems and slope on soil properties was assessed by determining the physical and chemical parameters. The cropping systems significantly (p < 0.05) influenced soil bulk density, root biomass, soil acidity and soil organic matter. The lowest soil bulk density (1.38 g/cm<sup>3</sup>) was recorded under the Palm grove-Maize-Cassava cropping system while the highest (1.47 g/cm<sup>3</sup>) was obtained with pure Palm grove cropping system. Root biomass was more abundant (0.28%) with the pure Palm grove cropping system. However, root biomass was significantly (p < 0.05) influenced by slope. Soil crusting resulted in no significant influence (p > 0.05) on the effect of cropping systems and slope. Moreover, cropping systems resulted in significant effects (p < 0.05). Soil organic matter and soil-assimilated phosphorus content were significantly influenced by the effect of the slope. These findings indicated that cropping systems and slope are significant drivers in soil degradation in the Kpacomey watershed and bringing out cropping systems that best aim at soil conservation. 展开更多
关键词 cropping systems Soil Organic Matter Soil Degradation BENIN
下载PDF
Wheat, maize and sunflower cropping systems selectively influence bacteria community structure and diversity in their and succeeding crop's rhizosphere 被引量:18
4
作者 WEN Xin-ya Eric Dubinsky +2 位作者 WU Yao YU Rong CHEN Fu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第8期1892-1902,共11页
Wheat and maize are increasingly used as alternative crops to sunflower monocultures that dominate the Hetao Irrigation District in China.Shifts from sunflower monocultures to alternate cropping systems may have signi... Wheat and maize are increasingly used as alternative crops to sunflower monocultures that dominate the Hetao Irrigation District in China.Shifts from sunflower monocultures to alternate cropping systems may have significant effects on belowground microbial communities which control nutrient cycling and influence plant productivity.In this research,rhizosphere bacterial communities were compared among sunflower,wheat and maize cropping systems by 454 pyrosequencing.These cropping systems included 2 years wheat(cultivar Yongliang 4) and maize(cultivar Sidan 19) monoculture,more than 20 years sunflower(cultivar 5009) monoculture,and wheat-sunflower and maize-sunflower rotation.In addition,we investigated rhizosphere bacterial communities of healthy and diseased plants at maturity to determine the relationship between plant health and rotation effect.The results revealed taxonomic information about the overall bacterial community.And significant differences in bacterial community structure were detected among these cropping systems.Eight of the most abundant groups including Proteobacteria,Bacteroidetes,Acidobacteria,Gemmatimonadetes,Chloroflexi,Actinobacteria,Planctomycetes and Firmicutes accounted for more than 85%of the sequences in each treatment.The wheat-wheat rhizosphere had the highest proportion of Acidobacteria,Bacteroidetes and the lowest proportion of unclassified bacteria.Wheat-sunflower cropping system showed more abundant Acidobacteria than maize-sunflower and sunflower monoculture,exhibiting some influences of wheat on the succeeding crop.Maize-maize rhizosphere had the highest proportion of γ-Proteobacteria,Pseudomonadales and the lowest proportion of Acidobacteria.Sunflower rotation with wheat and maize could increase the relative abundance of the Acidobacteria while decrease the relative abundance of the unclassified phyla,as was similar with the health plants.This suggests some positive impacts of rotation with wheat and maize on the bacterial communities within a single field.These results demonstrate that different crop rotation systems can have significant effects on rhizosphere microbiomes that potentially alter plant productivities in agricultural systems. 展开更多
关键词 bacterial community structure and diversity RHIZOSPHERE cropping system 454 pyrosequencing
下载PDF
Tillage, crop residue, and nutrient management effects on.soil organic carbon in rice-based cropping systems: A review 被引量:11
5
作者 Rajan Ghimire Sushil Lamichhane +2 位作者 Bharat Sharma Acharya Prakriti Bista Upendra Man Sainju 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第1期1-15,共15页
Soil organic carbon(SOC) sequestration is one of the major agricultural strategies to mitigate greenhouse gas(GHG)emissions,enhance food security,and improve agricultural sustainability.This paper synthesizes the much... Soil organic carbon(SOC) sequestration is one of the major agricultural strategies to mitigate greenhouse gas(GHG)emissions,enhance food security,and improve agricultural sustainability.This paper synthesizes the much-needed stateof-knowledge on the effects of tillage,crop residue,and nutrient management practices on SOC sequestration and identifies potential research gap,opportunities,and challenges in studying SOC dynamics in rice(Oryza sativa L.)-based cropping systems in South Asia,mainly in Bangladesh,Bhutan,India,Nepal,Pakistan,and Sri Lanka.Improved management practices such as reduced- and no-tillage management,nitrogen(N) fertilizer and farmyard manure(FYM) application,and crop residue addition can improve SOC accumulation.Positive effects of no-tillage,crop residue addition,N addition through manure or compost application,and integration of organic and chemical fertilizers on SOC accumulation in rice-based cropping systems have been documented from South Asia.However,limited data and enormous discrepancies in SOC measurements across the region exist as the greatest challenge in increasing SOC sequestration and improving agricultural sustainability.More research on SOC as influenced by alternative tillage,crop residue,and nutrient management systems,and development of SOC monitoring system for existing long-term experiments will advance our understanding of the SOC dynamics in rice-based cropping systems and improve agricultural system sustainability in South Asia. 展开更多
关键词 土壤有机碳 养分管理 作物残茬 种植系统 有机碳积累 农业系统 综述 稻作
下载PDF
The Effects of Climate Change on the Planting Boundary and Potential Yield for Different Rice Cropping Systems in Southern China 被引量:5
6
作者 YE Qing YANG Xiao-guang +4 位作者 LIU Zhi-juan DAI Shu-wei LI Yong XIE Wen-juan CHEN Fu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第7期1546-1554,共9页
Based on climate data from 254 meteorological stations,this study estimated the effects of climate change on rice planting boundaries and potential yields in the southern China during 1951-2010.The results indicated a... Based on climate data from 254 meteorological stations,this study estimated the effects of climate change on rice planting boundaries and potential yields in the southern China during 1951-2010.The results indicated a significant northward shift and westward expansion of northern boundaries for rice planting in the southern China.Compared with the period of 1951-1980,the average temperature during rice growing season in the period of 1981-2010 increased by 0.4°C,and the northern planting boundaries for single rice cropping system(SRCS),early triple cropping rice system(ETCRS),medium triple cropping rice system(MTCRS),and late triple cropping rice system(LTCRS)moved northward by 10,30,52 and 66 km,respectively.In addition,compared with the period of 1951-1980,the suitable planting area for SRCS was reduced by 11%during the period of1981-2010.However,the suitable planting areas for other rice cropping systems increased,with the increasing amplitude of 3,8,and 10%for ETCRS,MTCRS and LTCRS,respectively.In general,the light and temperature potential productivity of rice decreased by 2.5%.Without considering the change of rice cultivars,the northern planting boundaries for different rice cropping systems showed a northward shift tendency.Climate change resulted in decrease of per unit area yield for SRCS and the annual average yields of ETCRS and LTCRS.Nevertheless,the overall rice production in the entire research area showed a decreasing trend even with the increasing trend of annual average yield for MTCRS. 展开更多
关键词 水稻种植 种植制度 气候变化 中国南方 潜在产量 边界 光温生产潜力 单位面积产量
下载PDF
Economic Analysis of Diversified Rotational Cropping Systems in the Lateritic Belt of Lower Gangetic Plain of Eastern India 被引量:2
7
作者 D. Mandal K. Baral +2 位作者 D. C. Ghosh J. Timsina M. K. Dasgupta 《Journal of Agricultural Science and Technology(B)》 2011年第3期331-341,共11页
关键词 轮作系统 经济分析 多元化 红土 平原 恒河 风险承受能力 水稻产量
下载PDF
Soil carbon sequestration under long-term rice-based cropping systems of purple soil in Southwest China 被引量:8
8
作者 FAN Hong-zhu CHEN Qing-rui +4 位作者 QIN Yu-sheng CHEN Kun TU Shi-hua XU Ming-gang ZHANG Wen-ju 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第12期2417-2425,共9页
Carbon sequestration in agricultural soils is a complex process controlled by farming practices, climate and some other environment factors. Since purple soils are unique in China and used as the main cropland in Sich... Carbon sequestration in agricultural soils is a complex process controlled by farming practices, climate and some other environment factors. Since purple soils are unique in China and used as the main cropland in Sichuan Basin of China, it is of great importance to study and understand the impacts of different fertilizer amendments on soil organic carbon(SOC) changes with time. A research was carried out to investigate the relationship between soil carbon sequestration and organic carbon input as affected by different fertilizer treatments at two long-term rice-based cropping system experiments set up in early 1980 s. Each experiment consisted of six identical treatments, including(1) no fertilizer(CK),(2) nitrogen and phosphorus fertilizers(NP),(3) nitrogen, phosphorus and potassium fertilizers(NPK),(4) fresh pig manure(M),(5) nitrogen and phosphorus fertilizers plus manure(MNP), and(6) nitrogen, phosphorus and potassium fertilizers plus manure(MNPK). The results showed that annual harvestable carbon biomass was the highest in the treatment of MNPK, followed by MNP and NPK, then M and NP, and the lowest in CK. Most of fertilizer treatments resulted in a significant gain in SOC ranging from 6.48 to 2 9.13% compared with the CK, and raised soil carbon sequestration rate to 0.10–0.53 t ha–1 yr-1. Especially, addition of manure on the basis of mineral fertilizers was very conducive to SOC maintenance in this soil. SOC content and soil carbon sequestration rate under balanced fertilizer treatments(NPK and MNPK) in the calcareous purple soil(Suining) were higher than that in the acid purple soil(Leshan). But carbon conversion rate at Leshan was 11.00%, almost 1.5 times of that(7.80%) at Suining. Significant linear correlations between soil carbon sequestration and carbon input were observed at both sites, signifying that the purple soil was not carbon-saturated and still had considerable potential to se questrate more carbon. 展开更多
关键词 酸性紫色土 农业土壤 中国西南部 固碳 种植制度 土壤有机碳 施肥处理 水稻
下载PDF
Phosphorus losses via surface runoff in rice-wheat cropping systems as impacted by rainfall regimes and fertilizer applications 被引量:8
9
作者 LIU Jian ZUO Qiang +6 位作者 ZHAI Li-mei LUO Chun-yan LIU Hong-bin WANG Hong-yuan LIU Shen ZOU Guo-yuan REN Tian-zhi 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第3期667-677,共11页
Phosphorus(P) losses from agricultural soils contribute to eutrophication of surface waters. This field plot study investigated effects of rainfall regimes and P applications on P loss by surface runoff from rice(Oryz... Phosphorus(P) losses from agricultural soils contribute to eutrophication of surface waters. This field plot study investigated effects of rainfall regimes and P applications on P loss by surface runoff from rice(Oryza sativa L.) and wheat(Triticum aestivum L.) cropping systems in Lake Taihu region, China. The study was conducted on two types of paddy soils(Hydromorphic at Anzhen site, Wuxi City, and Degleyed at Xinzhuang site, Changshu City, Jiangsu Province) with different P status, and it covered 3 years with low, high and normal rainfall regimes. Four rates of mineral P fertilizer, i.e., no P(control), 30 kg P ha^(–1) for rice and 20 kg P ha^(–1) for wheat(P_(30+20)), 75 plus 40(P_(75+40)), and 150 plus 80(P_(150+80)), were applied as treatments. Runoff water from individual plots and runoff events was recorded and analyzed for total P and dissolved reactive P concentrations. Losses of total P and dissolved reactive P significantly increased with rainfall depth and P rates(P<0.0001). Annual total P losses ranged from 0.36–0.92 kg ha^(–1) in control to 1.13–4.67 kg ha^(–1) in P_(150+80) at Anzhen, and correspondingly from 0.36–0.48 kg ha^(–1) to 1.26–1.88 kg ha^(–1) at Xinzhuang, with 16–49% of total P as dissolved reactive P. In particular, large amounts of P were lost during heavy rainfall events that occurred shortly after P applications at Anzhen. On average of all P treatments, rice growing season constituted 37–86% of annual total P loss at Anzhen and 28–44% of that at Xinzhuang. In both crop seasons, P concentrations peaked in the first runoff events and decreased with time. During rice growing season, runoff P concentrations positively correlated(P<0.0001) with P concentrations in field ponding water that was intentionally enclosed by construction of field bund. The relative high P loss during wheat growing season at Xinzhuang was due to high soil P status. In conclusion, P should be applied at rates balancing crop removal(20–30 kg P ha^(–1) in this study) and at time excluding heavy rains. Moreover, irrigation and drainage water should be appropriately managed to reduce runoff P losses from rice-wheat cropping systems. 展开更多
关键词 磷素流失 稻麦轮作系统 降雨量 水体富营养化 径流流失 生长季节 施肥 种植系统
下载PDF
Modeling Soil Organic Matter Dynamics Under Intensive Cropping Systems on the Huang-Huai-Hai Plain of China 被引量:6
10
作者 LEI Hong-Jun LI Bao-Guo +3 位作者 BAI You-Lu HUANG Yuan-Fang Lü Yi-Zhong LI Gui-Tong 《Pedosphere》 SCIE CAS CSCD 2006年第4期409-419,共11页
A modified CQESTR model, a simple yet useful model frequently used for estimating carbon sequestration in agricultural soils, was developed and applied to evaluate the effects of intensive cropping on soil organic mat... A modified CQESTR model, a simple yet useful model frequently used for estimating carbon sequestration in agricultural soils, was developed and applied to evaluate the effects of intensive cropping on soil organic matter (SOM) dynamics and mineralization as well as to estimate carbon dioxide emission from agricultural soils at seven sites on the Huang-Huai-Hai Plain of China. The model was modified using site-specific parameters from short- and mid-term buried organic material experiments at four stages of biomass decomposition. The predicted SOM results were validated using independent data from seven long-term (10-to 20-year) soil fertility experiments in this region. Regression analysis on 1151 pairs of predicted and measured SOM data had an r2 of 0.91 (P (?) 0.01). Therefore, the modified model was able to predict the mineralization of crop residues, organic amendments, and native SOM. Linear regression also showed that SOM mineralization rate (MR) in the plow layer increased by 0.22% when annual crop yield increased by 1 t ha-1 (P (?) 0.01), suggesting an improvement in SOM quality. Apparently, not only did the annual soil respiration efflux merely reflect the intensity of soil organism and plant metabolism, but also the SOM MR in the plow layer. These results suggested that the modified model was simple yet valuable in predicting SOM trends at a single agricultural field and could be a powerful tool for estimating C-storage potential and reconstructing C storage on the Huang-Huai-Hai Plain of China. 展开更多
关键词 二氧化碳 土壤 有机质 黄淮海平原
下载PDF
Effects of Residue Management and Cropping Systems on Wheat Yield Stability in a Semiarid Mediterranean Clay Soil 被引量:3
11
作者 Rachid Mrabet 《American Journal of Plant Sciences》 2011年第2期202-216,共15页
Agriculture is the single biggest user of land and water in Morocco;however its performances are still low due to high rainfall variation and rates of soil productivity depletion. Increasing concerns about soil and en... Agriculture is the single biggest user of land and water in Morocco;however its performances are still low due to high rainfall variation and rates of soil productivity depletion. Increasing concerns about soil and environment quality degradation have raised the need to review existing tillage management systems and develop new systems for seed-bed preparation. Consequently, No-tillage is found a promising practice of soil management to improve simultaneously soil quality and wheat production in semiarid Morocco. However, residue management under No-tillage was Not yet studied in conjunction with wheat rotation. Therefore, a field study was conducted in the semiarid Chaouia Plain of Morocco during the period from 1994 to 2003, in order to evaluate the impacts of different tillage practices (conventional tillage (CT), No-tillage (NT));No-tillage wheat residue management scenarios (total NTr, partial NTp and No-removal of residues NTm) and crop rotations (continuous wheat (CW), Wheat-Fallow (WF), Wheat-Maize-Fallow (WMF), Wheat-Lentil-Fallow (WLF) and Wheat-Barley-Fallow (WBF)) on wheat production. Over-years, conventional tillage system permitted lower yield of wheat while NT maintenance of crop residue at the surface is needed to increase it. Basically, NTp could be adopted in mixed crop-livestock systems of semiarid areas for the purpose of guarantying grain and feed. Wheat yields were the lowest under continuous wheat for all years. Wheat-fallow rotation is an important option in dry years or areas, while wheat-fallow-lentil or barley rotations are recommended in better environments. Stability analysis indicated that yields in the No-tillage system were less influenced by adverse growing conditions than conventional tillage system, particularly under low rainfall. These results indicate that improved soil quality under No-tillage enhanced wheat yield stability by reducing the impact of adverse growing conditions. 展开更多
关键词 NO-TILLAGE RESIDUE Management WHEAT cropping System STABILITY Analysis Morocco
下载PDF
Possible Trajectories of Agricultural Cropping Systems in China from 2011 to 2050 被引量:3
12
作者 Junfang Zhao Jianping Guo 《American Journal of Climate Change》 2013年第3期191-197,共7页
Predicting the possible impacts of future climate change on cropping systems can provide important theoretical support for reforming cropping system and adjusting the distribution of agricultural production in the fut... Predicting the possible impacts of future climate change on cropping systems can provide important theoretical support for reforming cropping system and adjusting the distribution of agricultural production in the future. The study was based on the daily data of future B2 climate scenario (2011-2050) and baseline climate condition (1961-1990) from high resolution regional climate model PRECIS (~50 km grid interval). According to climatic divisions of cropping systems in China, the active accumulated temperature stably passing the daily average temperature of 0°C, the extreme minimum temperature and the termination date passing the daily average temperature of 20°C which were justified by dominance as a limitation of different cropping systems in zero-grade zone were investigated. In addition, the possible trajectories of different cropping systems in China from 2011 to 2050 were also analyzed and assessed. Under the projected future B2 climate scenario, from 2011 to 2050, the northern boundaries of double cropping area and triple cropping area would move northward markedly. The most of the present double cropping area would be replaced by the different triple cropping patterns, while current double cropping area would shift towards areas presently dominated by single cropping systems. Thus the shift of multiple cropping areas would lead to a significant decrease of single cropping area. Compared with China’s land area, the percentage cover of single cropping area and double cropping area would decrease slowly, while percentage cover of triple cropping area would gradually increase. 展开更多
关键词 CLIMATE Change AGRICULTURE in China NORTHERN Boundary of cropping System
下载PDF
Evaluating the Intercropping of Millet with Cowpea for Forage Yield and Quality
13
作者 Naveed Islam Muhammad Shahid Ibni Zamir +4 位作者 Shan Mohi Ud Din Umer Farooq Haseeb Arshad Aqib Bilal Muhammad Talha Sajjad 《American Journal of Plant Sciences》 2018年第9期1781-1793,共13页
A field study was scheduled to estimate the impact of intercropping of pearl millet with cowpea on forage yield and quality at Agronomy Research Farm, University of Agriculture, Faisalabad. It was done in kharif seaso... A field study was scheduled to estimate the impact of intercropping of pearl millet with cowpea on forage yield and quality at Agronomy Research Farm, University of Agriculture, Faisalabad. It was done in kharif season 2016. Randomized complete block design was used to conduct this experiment. It has three replications. The size of net plot is 3.6 m × 6 m. It comprised of five treatments (T1 = one row of millet alternating with one row of cowpea (1M:1C), T2 = two rows of millet alternating with one row of cowpea (2M:1C), T3 = one row of millet alternating with two rows of cowpea (1M:2C), T4 = sole millet, T5 = sole cowpea). We found that intercropping significantly effected the yield and quality of forage. Intercropping system had significant effects on nutritive value of forage crop. Within various treatments of intercropping, it is evident that treatment T2 (two rows of millet alternating with one row of cowpea) gives maximum total dry matter yield (9.68 t ha-1). It was then tracked by treatment T1 (one row of millet alternating with one row of cowpea) and treatment T3 (one row of millet alternating with two rows of cowpea) producing dry matter yield (9.07 t ha-1 and 8.33 t ha-1, respectively). Based on high grain and suitable environmental condition, intercrop productivity compared to sole crop could be selected for improving the productivity of millet/cowpea mixture in the Punjab. 展开更多
关键词 INTERcropping forage Quality Yield CROP Productivity
下载PDF
Survey of Rice Cropping Systems in Kampong Chhnang Province,Cambodia 被引量:1
14
作者 Volker KLEINHENZ Sophon CHEA Ngin HUN 《Rice science》 SCIE 2013年第2期154-164,共11页
Although Cambodia might have achieved self-sufficiency and an exported surplus in rice production,its rice-based farming systems are widely associated with low productivity,low farmer income and rural poverty.The stud... Although Cambodia might have achieved self-sufficiency and an exported surplus in rice production,its rice-based farming systems are widely associated with low productivity,low farmer income and rural poverty.The study is based on a questionnaire village survey in 14 communes containing 97 villages of Kampong Chhnang Province from March to June,2011.It analyzes the prevailing rice-based cropping systems and evaluates options for their improvement.Differences in cropping systems depend on the distance from the Tonle Sap water bodies.At distances greater than 10 km,transplanted wet-season rice cropping system with low productivity of about 1.6 t/hm 2 prevails.This deficiency can be primarily attributed to soils with high coarse sand fractions and low pH (< 4.0),use of 'late' cultivars,and exclusive use of self-propagated seeds.To improve this cropping system,commercial 'medium' cultivars help prevent crop failure by shortening the cultivation period by one month and complementation of wet-season rice with non-rice crops should be expanded.Areas adjacent (≤ 1 km) to the water bodies become inundated for up to seven months between July until January of each year.In this area,soils contain more fine sand,silt and clay,and their pH is higher (> 4.0).Farmers predominantly cultivate dry-season recession rice between January and April.Seventy-nine percent of the area is sown directly and harvested by combines.Adoption ratio of commercial rice seeds is 59% and yields average 3.2 t/hm 2.Introduction of the second dry-season rice between April and July may double annual yields in this rice cropping system.Besides upgrading other cultivation technologies,using seeds from commercial sources will improve yield and rice quality.Along with rice,farmers grow non-rice crops at different intensities ranging from single annual crops to intensive sequences at low yields. 展开更多
关键词 RICE cropping system SOCIOECONOMIC INDICATOR ON-FARM activity RICE production
下载PDF
Production Performance of Root Systems of Four Forage Legume Species and Their Development Characteristics in Loess Plateau,China 被引量:1
15
作者 Zhang Jianquan Zhang Jiyu +2 位作者 Wang Yanrong Xie Wengang Li Juncheng 《Animal Husbandry and Feed Science》 CAS 2014年第4期165-169,共5页
Production performance of four forage legumes species of Medicago sativa,Onobrychis viciifolia,Lotus corniculatus and Galega officinalis were determined,including plant height,above-ground biomass per unit area,tiller... Production performance of four forage legumes species of Medicago sativa,Onobrychis viciifolia,Lotus corniculatus and Galega officinalis were determined,including plant height,above-ground biomass per unit area,tillers per unit area,fertile tillers per unit area,shoot /leaf ratio and fresh /dry matter weight ratio,and the distribution characteristics of their root systems in 0- 100 cm soil layers with 10 cm interval were studied. Results showed that the average aboveground fresh biomass(4 a and 5 a) of four forage legumes species successively were L. corniculatus > M. sativa > O. viciifolia > G. officinalis. The average plant heights in two years successively were O. viciifolia > M. sativa > G. officinalis > L. corniculatus. Tillers per unit area of four forage legume species in two years successively were M. sativa > L. corniculatus > O. viciifolia > G. officinalis. Fertile tillers per unit area in two years were O. viciifolia > M. sativa > L. corniculatus > G. officinalis. Average shoot /leaf ratio in two years were G. officinalis > M. sativa > O. viciifolia > L. corniculatus. Average moisture contents of four forage legume species in two years successively were G. officinalis > L. corniculatus > M. sativa = O. viciifolia. The distribution characteristics of root systems of four forage legumes species in 0- 100 cm soil layers were as follows: the root weights of M. sativa in 0- 40 cm soil layers accounted for about 98. 3% of total root weight,that of O. viciifolia in 0- 30 cm soil layers was 85. 8%,that of L. corniculatus in 0- 10 cm soil layers was 80%,and that of G. officinalis in 0- 40 cm soil layers was 81. 4%. The results suggested that L. corniculatus was suited to plant in slighter degraded pasture to control water and soil erosion in early stage,G. officinalis with strong lateral roots was adapted to degraded grassland in the Loess Plateau where soil nutrient was poor,while O. viciifolia and M. sativa with potentially strong main root were fit for water and soil conservation in the losses plateau for long term. 展开更多
关键词 LOESS PLATEAU forage legumes BIOMASS Production pe
下载PDF
Technical efficiency and its determinants of the various cropping systems in the purple-soiled,hilly region of southwestern China 被引量:2
16
作者 ZHANG Shi-chao WEI Chao-fu +1 位作者 SHAO Jing-an WU Zhao-juan 《Journal of Mountain Science》 SCIE CSCD 2016年第12期2205-2223,共19页
This study examines the technical efficiency(TE) differences among typical cropping systems of smallholder farmers in the purple-soiled hilly region of southwestern China.Household-,plot-,and crop-level data and commu... This study examines the technical efficiency(TE) differences among typical cropping systems of smallholder farmers in the purple-soiled hilly region of southwestern China.Household-,plot-,and crop-level data and community surveys were conducted to explore TE levels and determinants of typical cropping systems by using a translog stochastic frontier production function.Results indicate significant difference in TE and its determinants among cropping systems.The mean TEs of the rice cropping system(R),the rice-rape cropping system(RR),the rice-rape-potato cropping system(RRP),and the oil cropping system(O) are0.86,0.90,0.84,and 0.85,respectively,which are over 1.17 times higher than those of the maize-sweet potato-other crop cropping system(MSO) and the maize-sweet potato-wheat cropping system(MSW) at0.78 and 0.69,respectively.Moreover,Technical inefficiency(TIE) of different cropping systems is significantly affected by characteristics of the household as well as plot.However,the impact of land quality,mechanical cultivation conditions,crop structure,farming system,farm radius,household type,cultivated land area per capita,and annual household income per capitalon TIE vary by cropping system.Additionally,output elasticity of land,labor,and capital,as a group,is greater than the one of agricultural machinery and irrigation.Finally,when household-owned effective agricultural labor is at full farming capacity,optimal plot sizes for the R,RR,RRP,MSO,MSW,and 0 cropping systems are 1.12hm^2,0.35 hm^2,0.25 hm^2,2.82 hm^2,1.87 hm^2,and 1.17hm^2,respectively. 展开更多
关键词 紫色丘陵区 中国西南部 技术效率 种植系统 种植制度 农业劳动力 人均耕地面积 土地质量
原文传递
Experiences and Research Perspectives on Sustainable Development of Rice-Wheat Cropping Systems in the Chengdu Plain, China 被引量:2
17
作者 ZHENG Jia-guo CHI Zhong-zhi JIANG Xin-lu TANG Yong-lu ZHANG Hong 《Agricultural Sciences in China》 CAS CSCD 2010年第9期1317-1325,共9页
The rice and wheat cropping pattern is one of the main cropping systems in the world. A large number of research results showed that successive cropping of rice and wheat resulted in a series of problems such as hinde... The rice and wheat cropping pattern is one of the main cropping systems in the world. A large number of research results showed that successive cropping of rice and wheat resulted in a series of problems such as hindering nutrition absorption, gradual degeneration of soil fertility, decline of soil organic matter, and increased incidence of diseases and pests. In China, especially in the Chengdu plain where rice-wheat cropping system is practiced, productivity and soil fertility was enhanced and sustained. This paper reviews the relevant data and experiences on rice-wheat cropping in the Chengdu Plain from 1977 to 2006. The principal sustainable strategies used for rice-wheat cropping systems in Chengdu Plain included: 1) creating a favorable environment and viable rotations; 2) balanced fertilization for maintenance of sustainable soil productivity; 3) improvement of crop management for higher efficiency; and 4) use the newest cultivars and cultivation techniques to upgrade the production level. Future research is also discussed in the paper as: 1) the constant topic: a highly productive and efficient rice-wheat cropping system for sustainable growth; 2) the future trend: simplified cultivation techniques for the rice-wheat cropping system; 3) the foundation: basic research for continuous innovation needed for intensive cropping. It is concluded that in the rice-wheat cropping system, a scientific and reasonable tillage/cultivation method can not only avoid the degradation of soil productivity, but also maintain sustainable growth in the long run. 展开更多
关键词 可持续发展战略 成都平原 种植模式 种植系统 小麦 水稻 中国 简化栽培技术
下载PDF
Cropping Systems to Improve Carbon Sequestration for Mitigation of Climate Change 被引量:1
18
作者 Qingren Wang Yuncong Li Ashok Alva 《Journal of Environmental Protection》 2010年第3期207-215,共9页
The recent trend of an increase in the concentration of greenhouse gases (GHGs) in the atmosphere has led to an ele-vated concern and urgency to adopt measures for carbon (C) sequestration to mitigate the climate chan... The recent trend of an increase in the concentration of greenhouse gases (GHGs) in the atmosphere has led to an ele-vated concern and urgency to adopt measures for carbon (C) sequestration to mitigate the climate change. Among all GHGs, carbon dioxide (CO2) is the most important one which occurs in the greatest concentration and has the strong-est radiative forcing among all. Reducing the release of CO2 to the atmosphere through “green energy” technologies or fossil fuel energy alternatives, such as wind, solar and hydraulic energies, is a major challenge. However, removal of atmospheric CO2 by terrestrial ecosystems via C sequestration and converting the sequestered C into the soil organic C has provided a great opportunity for shifting GHG emission to mitigate the climate change. Soil is an ideal reservoir for storage of organic C since soil organic C has been depleted due to land misuse and inappropriate management through the long history. To optimize the efficiency of C sequestration in agriculture, cropping systems, such as crop rotation, intercropping, cover cropping, etc., play a critical role by influencing optimal yield, total increased C sequestered with biomass, and that remained in the soil. As matter of fact, soil C sequestration is a multiple purpose strategy. It restores degraded soils, enhances the land productivity, improves the diversity, protects the environment and reduces the enrichment of atmospheric CO2, hence shifts emission of GHGs and mitigates climate change. 展开更多
关键词 CARBON Dioxide CARBON SEQUESTRATION Climate Change cropping System GREENHOUSE Gas
下载PDF
Triple Cropping Systems of Spring Maize, Tropical Grass of Teff (<i>Eragrostis tef</i>) and Winter Cereal Crops to Combine Total Digestible Nutrient Yield with Protein Concentration in Southern Kyushu, Japan
19
作者 Yukimi Nakata Sachiko Idota +1 位作者 Manabu Tobisa Yasuyuki Ishii 《Agricultural Sciences》 2018年第1期129-140,共12页
It is ordinarily common for forage production in southern Kyushu to adopt a double cropping system, composed of summer forage crops (e.g. maize and sorghum) cultivated from late March to early September, and winter gr... It is ordinarily common for forage production in southern Kyushu to adopt a double cropping system, composed of summer forage crops (e.g. maize and sorghum) cultivated from late March to early September, and winter grass crops (e.g. Italian ryegrass (IR) and oat) from mid-October to the following May. However, if high total digestible nutrient (TDN) production is aimed to introduce winter cereal crops (e.g. wheat and barley) as a replacement of IR, it is necessary to cultivate tropical grass, which has a rapid-growth potential with high crude protein (CP) concentration in a switching period between summer and winter crops. In this study, teff (Eragrostis tef) was tried to evaluate as a candidate crop in the switching period. Yield and quality of two types of triple forage cropping system were determined under maize-teff-barley and maize-teff-wheat in the first and second year, respectively. Compared with the normal year, summer temperature was higher and summer and winter precipitations were lower in the first year, while no climatic disorder was observed in the second year. Even though dry matter yield of teff was minimal in the present system due to weed damage, CP concentration was the highest among crops and TDN yields of the present cropping system tended to be higher in the second year with no drought stress than in the conventional maize-IR system in the region. 展开更多
关键词 cropping System Dry Matter YIELD ERAGROSTIS TEF forage Quality Growth Attribute
下载PDF
Weed Incidences and Their Effect on Crop Productivity under Diversified Rotational Cropping Systems in the Lateritic Belt of Lower Gangetic Plain of Eastern India
20
作者 D. Mandal D. C. Ghosh +2 位作者 K. Baral M. K. Dasgupta J. Timsina 《Journal of Agricultural Science and Technology(B)》 2011年第4期511-522,共12页
关键词 杂草多样性 轮作系统 作物产量 多元化 红土 印度 平原 恒河
下载PDF
上一页 1 2 107 下一页 到第
使用帮助 返回顶部