The target in this investigation is separation and delineation of geochemical anomalies for the single element Cu in Mesgaran mining area, eastern Iran. Mesgaran mining area is located in south part of Sarbishe county...The target in this investigation is separation and delineation of geochemical anomalies for the single element Cu in Mesgaran mining area, eastern Iran. Mesgaran mining area is located in south part of Sarbishe county with about 29 Km distance to the county center. This region is part of an Ophiolite sequence and the copper anomalies seem to be related to a volcanic massive sulfide (VMS) deposit whose main part (massive sulfide Lens) has been eroded. In order to delineate Cu anomalies, the boxplot as an Exploratory Data Analysis (EDA) method and concentration-volume (C-V) Fractal modeling are employed. Both of the methods reveal low-deep anomalies which are highly correlated with geological and geophysical studies. As the main result of this study we show that Fractal modeling in spite of the Boxplot, is not recommended for complex geological settings. The proved shallow anomalies recorded by geophysical studies and defined by the used methods are in accordance to the stringer zone of a volcanic massive sulfide (VMS) deposit in Mesgaran mining area which means this region is the bottom of a VMS deposit and geochemical anomalies are related to the remained parts of the deposit.展开更多
Sphalerite banding is a common texture in Jinding (金顶) Pb-Zn deposit, Yunnan (云南), southwestern China. The frequency distribution and irregularity of sphalerite grains observed in the bandings are characterize...Sphalerite banding is a common texture in Jinding (金顶) Pb-Zn deposit, Yunnan (云南), southwestern China. The frequency distribution and irregularity of sphalerite grains observed in the bandings are characterized quantitatively by fractal models. Fractal dimensions calculated by several fractal models including box-counting model, perimeter-area (P-A) model, and number-area (N-A) model show the gradual change from outer banding to inner banding, indicating a decrease in area percentage, in irregularity, in shape and in grain size, and an increase in the numbers of grains. These results may imply an inward growth of sphalerite during mineralization, and self-organization properties are involved in the nonlinear process of mineralization.展开更多
The Indo-Gangetic Plain(IGP)is one of the most seismically vulnerable areas due to its proximity to the Himalayas.Geographic information system(GIS)-based seismic characterization of the IGP was performed based on the...The Indo-Gangetic Plain(IGP)is one of the most seismically vulnerable areas due to its proximity to the Himalayas.Geographic information system(GIS)-based seismic characterization of the IGP was performed based on the degree of deformation and fractal dimension.The zone between the Main Boundary Thrust(MBT)and the Main Central Thrust(MCT)in the Himalayan Mountain Range(HMR)experienced large variations in earthquake magnitude,which were identified by Number-Size(NS)fractal modeling.The central IGP zone experienced only moderate to low mainshock levels.Fractal analysis of earthquake epicenters reveals a large scattering of earthquake epicenters in the HMR and central IGP zones.Similarly,the fault fractal analysis identifies the HMR,central IGP,and south-western IGP zones as having more faults.Overall,the seismicity of the study region is strong in the central IGP,south-western IGP,and HMR zones,moderate in the western and southern IGP,and low in the northern,eastern,and south-eastern IGP zones.展开更多
Spontaneous imbibition(SI)is an important mechanism for enhancing oil recovery in low-permeability reservoirs.Due to the strong heterogeneity,and the non-Darcy flow,the construction of SI model for lowpermeability res...Spontaneous imbibition(SI)is an important mechanism for enhancing oil recovery in low-permeability reservoirs.Due to the strong heterogeneity,and the non-Darcy flow,the construction of SI model for lowpermeability reservoirs is extremely challenging.Commonly,traditional SI models based on single or averaged capillary tortuosity ignore the influence of heterogeneity of pore seepage channels and the threshold pressure(TP)on imbibition.Therefore,in this work,based on capillary model and fractal theory,a mathematical model of characterizing SI considering heterogeneity of pore seepage channels is established.On this basis,the threshold pressure was introduced to determine the pore radius at which the wetted phase can displace oil.The proposed new SI model was verified by imbibition experimental data.The study shows that for weakly heterogeneous cores with permeability of 0-1 m D,the traditional SI model can characterize the imbibition process relatively accurately,and the new imbibition model can increase the coefficient of determination by 1.05 times.However,traditional model has serious deviations in predicting the imbibition recovery for cores with permeability of 10-50 m D.The new SI model coupling with heterogeneity of pore seepage channels and threshold pressure effectively solves this problem,and the determination coefficient is increased from 0.344 to 0.922,which is increased by2.68 times.For low-permeability reservoirs,the production of the oil in transitional pores(0.01-0.1μm)and mesopores(0.1-1μm)significantly affects the imbibition recovery,as the research shows that when the heterogeneity of pore seepage channels is ignored,the oil recovery in transitional pores and mesopores decreases by 7.54%and 4.26%,respectively.Sensitivity analysis shows that increasing interfacial tension,decreasing contact angle,oil-water viscosity ratio and threshold pressure will increase imbibition recovery.In addition,there are critical values for the influence of these factors on the imbibition recovery,which provides theoretical support for surfactant optimization.展开更多
Distinguishing geochemical anomalies from background is a basic task in exploratory geochemistry. The derivation of geochemical anomalies from stream sediment geochemical data and the decomposition of these anomalies ...Distinguishing geochemical anomalies from background is a basic task in exploratory geochemistry. The derivation of geochemical anomalies from stream sediment geochemical data and the decomposition of these anomalies into their component patterns were described. A set of stream sediment geochemical data was obtained for 1 880 km 2 of the Pangxidong area, which is in the southern part of the recently recognized Qinzhou-Hangzhou joint tectonic belt. This belt crosses southern China and tends to the northwest (NE) direction. The total number of collected samples was 7 236, and the concentrations of Ag, Au, Cu, As, Pb and Zn were measured for each sample. The spatial combination distribution law of geochemical elements and principal component analysis (PCA) were used to construct combination models for the identification of combinations of geochemical anomalies. Spectrum-area (S-A) fractal modeling was used to strengthen weak anomalies and separate them from the background. Composite anomaly modeling was combined with fractal filtering techniques to process and analyze the geochemical data. The raster maps of Au, Ag, Cu, As, Pb and Zn were obtained by the multifractal inverse distance weighted (MIDW) method. PCA was used to combine the Au, Ag, Cu, As, Pb, and Zn concentration values. The S-A fractal method was used to decompose the first component pattern achieved by the PCA. The results show that combination anomalies from a combination of variables coincide with the known mineralization of the study area. Although the combination anomalies cannot reflect local anomalies closely enough, high-anomaly areas indicate good sites for further exploration for unknown deposits. On this basis, anomaly and background separation from combination anomalies using fractal filtering techniques can provide guidance for later work.展开更多
The self-similar is a common phenomena arising in the field of geology. It has been shown that geochemical element data, mineral deposits, and spacial distribution conform to a fractal structure. A fractal distributio...The self-similar is a common phenomena arising in the field of geology. It has been shown that geochemical element data, mineral deposits, and spacial distribution conform to a fractal structure. A fractal distribution requires that the number of objects larger than a specified size have a power-law dependence on size. This paper shows that a number of distributions, including power-function, Pareto, lognormal, and Zipf, display fractal properties under certain conditions and that this may be used as the mathematical basis for developing fractal models for data exhibiting such distributions. The summation method is developed on the basis of fractal models to determine thresholds for Au data in Shandong Province, China. The anomalous area is enclosed by contours which have contour values greater than or equal to threshold (200 × 10^- 9) and contains known large-sized and super large-sized gold mineral deposits.展开更多
Soil water retention characteristics are the key information required in hydrological modeling. Frac-tal models provide a practical alternative for indirectly estimating soil water retention characteristics frompartic...Soil water retention characteristics are the key information required in hydrological modeling. Frac-tal models provide a practical alternative for indirectly estimating soil water retention characteristics fromparticle-size distribution data. Predictive capabilities of three fractal models, i.e, Tyler-Wheatcraft model,Rieu-Sposito model, and Brooks-Corey model, were fully evaluated in this work using experimental datafrom an international database and literature. Particle-size distribution data were firstly interpolated into20 classes using a van Genuchten-type equation. Fractal dimensions of the tortuous pore wall and the poresurface were then calculated from the detailed particle-size distribution and incorporated as a parameter infractal water retention models. Comparisons between measured and model-estimated water retention cha-racteristics indicated that these three models were applicable to relatively different soil textures and pressurehead ranges. Tyler-Wheatcraft and Brooks-Corey models led to reasonable agreements for both coarse- andmedium-textured soils, while the latter showed applicability to a broader texture range. In contrast, Rieu-Sposito model was more suitable for fine-textured soils. Fractal models produced a better estimation of watercontents at low pressure heads than at high pressure heads.展开更多
The surface morphology of Ti-Mg supported catalyst and the polyethyleneparticles are studied using scanning electron microscope(SEM) technology. The results show thateithen the catalyst's surface or polymer partic...The surface morphology of Ti-Mg supported catalyst and the polyethyleneparticles are studied using scanning electron microscope(SEM) technology. The results show thateithen the catalyst's surface or polymer particle's surface is irregular and has fractalcharacteristics, which can be described by fractal parameter. The more interesting discovery is thatthe surface fractal dimension values of the polymer particles vary periodically with thepolymerization time. We call this phenomenon fractal evolution, which can be divided into the'revolution' stage and the 'evolution' stage. And then we present polymerization fractal growingmodel (PFGM), and successfully describe and/or predict the whole evolving process of thepolyethylene particle morphology under the different slurry polymerization (includingpre-polymerization) conditions without H_2.展开更多
The paper presents a novel hydraulic fracturing model for the characterization and simulation of the complex fracture network in shale gas reservoirs. We go beyond the existing method that uses planar or orthogonal co...The paper presents a novel hydraulic fracturing model for the characterization and simulation of the complex fracture network in shale gas reservoirs. We go beyond the existing method that uses planar or orthogonal conjugate fractures for representing the ''complexity'' of the network. Bifurcation of fractures is performed utilizing the Lindenmayer system based on fractal geometry to describe the fracture propagation pattern, density and network connectivity. Four controlling parameters are proposed to describe the details of complex fractures and stimulated reservoir volume(SRV). The results show that due to the multilevel feature of fractal fractures, the model could provide a simple method for contributing reservoir volume calibration. The primary-and second-stage fracture networks across the overall SRV are the main contributions to the production, while the induced fracture network just contributes another 20% in the late producing period. We also conduct simulation with respect to different refracturing cases and find that increasing the complexity of the fracture network provides better performance than only enhancing the fracture conductivity.展开更多
observations from the field and the taboratory show that en echelon fractures withinfracture zones have a foede1 within Ricdel structure’ The tensile fallure mecbanism of en echelonfractures can be described by the p...observations from the field and the taboratory show that en echelon fractures withinfracture zones have a foede1 within Ricdel structure’ The tensile fallure mecbanism of en echelonfractures can be described by the pile-ups of sbear crack-dislocations. A fractal model can be used tosimulate the Riedel within Xiedel geometry, allowing the direct rneasarement of tbe ftactal dimen sions of en echelon fractare systems. The energy dissipation of tbe en ccbe1on fracture system canbe deduced using a fracil damage evo1ution model which exptalns tbe evo1ution process of en eche lon fracture svstems. The fractal nature of the fractures can be used to dcrive an accurate estimateof total energy dissipation.展开更多
Mineralization distributions are very heterogeneous in nature. As large orsuperlarge mineral deposits are quite rare whether in time or in space, it is difficult to detectall the largest mineral deposits in a region i...Mineralization distributions are very heterogeneous in nature. As large orsuperlarge mineral deposits are quite rare whether in time or in space, it is difficult to detectall the largest mineral deposits in a region in a limited period of time owing to the restriction oftechnology and exploration degrees-this is called 'not all discovered'. However, all discoveredlarge, especially superlarge, mineral deposits generally have a complete census in the geologicalliteratures. On the other hand, not all discovered small mineral deposits are recorded in thegeological literatures because for economic reasons people have not much interest in them-this iscalled 'not all recorded'. This practice often results in the observation truncations, that is, thedata points near the two ends in an observable population, which is obtained by fitting a power lawsize-frequency distribution to discovered mineral deposits in a given region, show concave-downdeparture from the correlation line fitted. The authors suggest that the size and number ofundiscovered deposits may be forecast by fitting a fractal size distribution to discovered mineraldeposit sizes between the upper and lower truncation observations and then extrapolating thescale-independent area to deposit sizes larger than the upper truncation limit. Based on thestatistical results obtained by the fractal size-frequency distributions of 394 discovered golddeposits with sizes greater than 2 t Au in China and 83 known gold deposits with sizes over 0.3 t Auin the Jiaodong area of China, the authors forecast according to the present commercial standardsfor gold ores that the total resources of undiscovered gold deposits ranging in tonnage from 50 to2000 t Au are more than 4500 tin China, and that in the Jiaodong area of China the total resourcesof potential gold deposits with sizes in the range of 30 to 650 t Au are about 700 t.展开更多
Without considering the influence of heat,existing fractal contact models are not applicable to analyze the contacts when the temperature changes.For this problem,the normal load model and the normal stiffness model o...Without considering the influence of heat,existing fractal contact models are not applicable to analyze the contacts when the temperature changes.For this problem,the normal load model and the normal stiffness model of thermal elasto-plastic contact of rough surfaces are developed respectively in this paper.The proposed model is based on the normal contact mechanics model of fractal theory of anisotropic and thermal elasto-plastic contact theory which can be used to characterize the rough surface thermodynamic properties.Then the validity of the model is verified.Finally,the influence of main parameters on the total normal load and the whole normal stiffness of thermal elasto-plastic contact at the interface is analyzed by contact simulation.The results show that the total normal load of thermal elasto-plastic contact increases with the increases of temperature.The whole normal stiffness of thermal elasto-plastic contact increases with increasing coefficient of linear expansion,scale factor,temperature difference or fractal dimension,but decreases with increasing fractal roughness.This model expands basic theory and applications of traditional models,and can be used to calculate and analyze the contacts when the temperature changes.展开更多
Permeability is one of the key issues in the design of molds and in the molding process for composite manufacture. As a disordered fibrous assembly, 2.5- dimension (2.5 D) woven reinforcement materials have complex ...Permeability is one of the key issues in the design of molds and in the molding process for composite manufacture. As a disordered fibrous assembly, 2.5- dimension (2.5 D) woven reinforcement materials have complex structure. It poses a challenge to the study of pore structure and the establishment of the theoretical permeability model. Toward addressing this problem, a powerful tool called fractal theory emerged. According to the analysis of 2.5 D woven reinforcement material stmcture using fractal theory, it is found that the structure has an obvious fractal character. Therefore, a permeability fractal model of 2.5D woven reinforcement material was established by cormbining the Hagen-Poiseulle equation with Darcy law according to the capillary vessel fractal model in this paper. The permeability was expressed as a function of the fractal dimension and microstructure parameter of the porous media in this model. The theoretical model is verified by experimental tests and the measurement data are in good agreement with the results obtained from the fractal medel .展开更多
Using the theory of nonlinear interactions between long and short waves, a nonlinear fractal sea surface model is presented for a one dimensional deep sea. Numerical simulation results show that spectra intensity chan...Using the theory of nonlinear interactions between long and short waves, a nonlinear fractal sea surface model is presented for a one dimensional deep sea. Numerical simulation results show that spectra intensity changes at different locations (in both the wave number domain and temporal-frequency domain), and the system obeys the energy conservation principle. Finally, a method to limit the fractal parameters is also presented to ensure that the model system does not become ill-posed,展开更多
The char combustion mechanisms were analyzed and a comprehensive fractal char combustion model was developed to give a better understanding and better predictions of the char combustion characteristics. Most of the co...The char combustion mechanisms were analyzed and a comprehensive fractal char combustion model was developed to give a better understanding and better predictions of the char combustion characteristics. Most of the complex factors affecting the char combustion were included, such as the coupling effects between the pore diffusion and the chemical reactions, the evolution of the char pore structures and the variation of the apparent reaction order during combustion, the CO/CO_2 ratio in the combustion products and the correction for oxy-char combustion. Eleven different chars were then combusted in two drop tube furnaces with the conversions of the partly burned char samples measured by thermogravimetric analysis. The combustion processes of these chars were simulated with the predicted char conversions matching very well with the measured data which shows that this char combustion model has good accuracy. The apparent reaction order of the char combustion decreases, stabilizes and then increases during the combustion process. The combustion rates in the oxy-mode are generally slower than in the air-mode and the effect of the char-CO_2 gasification reaction becomes obvious only when the temperature is relatively high and the O_2 concentration is relatively low.展开更多
An enzyme is a kind of protein with catalytic activity and long chain,and its structure and shape are determined by the hybridized state of atomic orbital.The fractal dimension(D_f)is closely related to the hybridizat...An enzyme is a kind of protein with catalytic activity and long chain,and its structure and shape are determined by the hybridized state of atomic orbital.The fractal dimension(D_f)is closely related to the hybridization,e.g.D_f=2ln2/ln[2(1+α/(1-α))]for the spa type, where a denotes the fraction of the s orbital in the hybridized molecular orbital.This relationship and the five fractal theorems introduced by the present paper play an important role in the investigations of the model of imitative enzyme.展开更多
Anomaly separation using geochemical data often involves operations in the frequency domain, such as filtering and reducing noise/signal ratios. Unfortunately, the abrupt edge truncation of an image along edges and ho...Anomaly separation using geochemical data often involves operations in the frequency domain, such as filtering and reducing noise/signal ratios. Unfortunately, the abrupt edge truncation of an image along edges and holes (with missing data) often causes frequency distribution distortion in the frequency domain. For example, bright strips are commonly seen in frequency distribution when using a Fourier transform. Such edge effect distortion may affect information extraction results; sometimes severely, depending on the edge abruptness of the image. Traditionally, edge effects are reduced by smoothing the image boundary prior to applying a Fourier transform. Zero-padding is one of the most commonly used smoothing methods. This simple method can reduce the edge effect to some degree but still distorts the image in some cases. Moreover, due to the complexity of geoscience images, which can include irregular shapes and holes with missing data, zero-padding does not always give satisfactory results. This paper proposes the use of decay functions to handle edge effects when extracting information from geoscience images. As an application, this method has been used in a newly developed multifractal method (S-A) for separating geochemical anomalies from background patterns. A geochemical dataset chosen from a mineral district in Nova Scotia, Canada was used to validate the method.展开更多
The effect of geological uncertainty on the development and mining of underground coal deposits is a key issue for longwall mining, as the presence of faults generates substantial monetary losses. This paper develops ...The effect of geological uncertainty on the development and mining of underground coal deposits is a key issue for longwall mining, as the presence of faults generates substantial monetary losses. This paper develops a method for the conditional simulation of fault systems and uses the method to quantify and assess fault uncertainty. The method is based on the statistical modelling of fault attributes and the simulation of the locations of the centres of the fault traces. Fault locations are generated from the thinning of a Poisson process using a spatially correlated probability field. The proposed algorithm for simulating fault traces takes into account soft data such as geological interpretations and geomechanical data. The simulations generate realisations of fault populations that reproduce observed faults, honour the statistics of the fault attributes, and respect the constraints of soft data, providing the means to thereby model and assess the related fault uncertainty.展开更多
One of the essential tasks accelerate the decision-making process in mineral exploration projects is ranking anomalous areas.In this study,we used fourteen geologic maps(at scale 1:100,000)in areas where systematic ge...One of the essential tasks accelerate the decision-making process in mineral exploration projects is ranking anomalous areas.In this study,we used fourteen geologic maps(at scale 1:100,000)in areas where systematic geochemical explorations were conducted in the Fariman-Kashmar axis in northeast Iran to conduct the anomaly ranking.On all these maps,samples were consistently prepared to be analyzed through statistical and geostatistical methods.At first,anomaly separation was carried out by fractal methods that resulted in the detection of 308 anomalous samples in 128 areas.These samples were classified into three groups of first,second,and thirdorder anomalies,whose number of anomalous samples were calculated based on this ranking technique.Three factors,including the average concentration of each anomaly,its surface area,and the number of its samples,were used to rank the areas.According to this technique,the maximum anomaly score obtained was 172 for the Taknar area,and the minimum score was 3 for several areas.To validate the ranking results,some exploration operations were carried out in some of these anomalous areas in which mining operations started later.Several significant gold anomalous areas were introduced,which is considered an important result of this study.展开更多
文摘The target in this investigation is separation and delineation of geochemical anomalies for the single element Cu in Mesgaran mining area, eastern Iran. Mesgaran mining area is located in south part of Sarbishe county with about 29 Km distance to the county center. This region is part of an Ophiolite sequence and the copper anomalies seem to be related to a volcanic massive sulfide (VMS) deposit whose main part (massive sulfide Lens) has been eroded. In order to delineate Cu anomalies, the boxplot as an Exploratory Data Analysis (EDA) method and concentration-volume (C-V) Fractal modeling are employed. Both of the methods reveal low-deep anomalies which are highly correlated with geological and geophysical studies. As the main result of this study we show that Fractal modeling in spite of the Boxplot, is not recommended for complex geological settings. The proved shallow anomalies recorded by geophysical studies and defined by the used methods are in accordance to the stringer zone of a volcanic massive sulfide (VMS) deposit in Mesgaran mining area which means this region is the bottom of a VMS deposit and geochemical anomalies are related to the remained parts of the deposit.
基金the Open Fund of the State Key Laboratory of Geological Processes and Mineral Resources of Chinaan NSERC Discovery Research Grant (ERC-OGP0183993) NSFC (No. 40373003).
文摘Sphalerite banding is a common texture in Jinding (金顶) Pb-Zn deposit, Yunnan (云南), southwestern China. The frequency distribution and irregularity of sphalerite grains observed in the bandings are characterized quantitatively by fractal models. Fractal dimensions calculated by several fractal models including box-counting model, perimeter-area (P-A) model, and number-area (N-A) model show the gradual change from outer banding to inner banding, indicating a decrease in area percentage, in irregularity, in shape and in grain size, and an increase in the numbers of grains. These results may imply an inward growth of sphalerite during mineralization, and self-organization properties are involved in the nonlinear process of mineralization.
文摘The Indo-Gangetic Plain(IGP)is one of the most seismically vulnerable areas due to its proximity to the Himalayas.Geographic information system(GIS)-based seismic characterization of the IGP was performed based on the degree of deformation and fractal dimension.The zone between the Main Boundary Thrust(MBT)and the Main Central Thrust(MCT)in the Himalayan Mountain Range(HMR)experienced large variations in earthquake magnitude,which were identified by Number-Size(NS)fractal modeling.The central IGP zone experienced only moderate to low mainshock levels.Fractal analysis of earthquake epicenters reveals a large scattering of earthquake epicenters in the HMR and central IGP zones.Similarly,the fault fractal analysis identifies the HMR,central IGP,and south-western IGP zones as having more faults.Overall,the seismicity of the study region is strong in the central IGP,south-western IGP,and HMR zones,moderate in the western and southern IGP,and low in the northern,eastern,and south-eastern IGP zones.
基金supported by China Natural Science Foundation(Grant No.52274053)Beijing Natural Science Foundation(Grant No.3232028)Open Fund of State Key Laboratory of Offshore Oil Exploitation(Grant No.CCL2021RCPS0515KQN)。
文摘Spontaneous imbibition(SI)is an important mechanism for enhancing oil recovery in low-permeability reservoirs.Due to the strong heterogeneity,and the non-Darcy flow,the construction of SI model for lowpermeability reservoirs is extremely challenging.Commonly,traditional SI models based on single or averaged capillary tortuosity ignore the influence of heterogeneity of pore seepage channels and the threshold pressure(TP)on imbibition.Therefore,in this work,based on capillary model and fractal theory,a mathematical model of characterizing SI considering heterogeneity of pore seepage channels is established.On this basis,the threshold pressure was introduced to determine the pore radius at which the wetted phase can displace oil.The proposed new SI model was verified by imbibition experimental data.The study shows that for weakly heterogeneous cores with permeability of 0-1 m D,the traditional SI model can characterize the imbibition process relatively accurately,and the new imbibition model can increase the coefficient of determination by 1.05 times.However,traditional model has serious deviations in predicting the imbibition recovery for cores with permeability of 10-50 m D.The new SI model coupling with heterogeneity of pore seepage channels and threshold pressure effectively solves this problem,and the determination coefficient is increased from 0.344 to 0.922,which is increased by2.68 times.For low-permeability reservoirs,the production of the oil in transitional pores(0.01-0.1μm)and mesopores(0.1-1μm)significantly affects the imbibition recovery,as the research shows that when the heterogeneity of pore seepage channels is ignored,the oil recovery in transitional pores and mesopores decreases by 7.54%and 4.26%,respectively.Sensitivity analysis shows that increasing interfacial tension,decreasing contact angle,oil-water viscosity ratio and threshold pressure will increase imbibition recovery.In addition,there are critical values for the influence of these factors on the imbibition recovery,which provides theoretical support for surfactant optimization.
基金Project(1212010071012) supported by Guangdong Pangxidong Mineral Prospect Investigation, ChinaProject(41004051) supported by the National Natural Science Foundation of ChinaProject ([2007]038-01-18) supported by Nationwide Mineral Resource Potential Evaluation Projects of Ministry of Land and Resources, China
文摘Distinguishing geochemical anomalies from background is a basic task in exploratory geochemistry. The derivation of geochemical anomalies from stream sediment geochemical data and the decomposition of these anomalies into their component patterns were described. A set of stream sediment geochemical data was obtained for 1 880 km 2 of the Pangxidong area, which is in the southern part of the recently recognized Qinzhou-Hangzhou joint tectonic belt. This belt crosses southern China and tends to the northwest (NE) direction. The total number of collected samples was 7 236, and the concentrations of Ag, Au, Cu, As, Pb and Zn were measured for each sample. The spatial combination distribution law of geochemical elements and principal component analysis (PCA) were used to construct combination models for the identification of combinations of geochemical anomalies. Spectrum-area (S-A) fractal modeling was used to strengthen weak anomalies and separate them from the background. Composite anomaly modeling was combined with fractal filtering techniques to process and analyze the geochemical data. The raster maps of Au, Ag, Cu, As, Pb and Zn were obtained by the multifractal inverse distance weighted (MIDW) method. PCA was used to combine the Au, Ag, Cu, As, Pb, and Zn concentration values. The S-A fractal method was used to decompose the first component pattern achieved by the PCA. The results show that combination anomalies from a combination of variables coincide with the known mineralization of the study area. Although the combination anomalies cannot reflect local anomalies closely enough, high-anomaly areas indicate good sites for further exploration for unknown deposits. On this basis, anomaly and background separation from combination anomalies using fractal filtering techniques can provide guidance for later work.
基金supported by the National Basic Research Program of China(Grant No.2006CB701406)the National Natural Science Foundation of China(Grant Nos.40672196, 40638041)the Program of Introducing Talents of Discipline to Universities of China(Grant No.B07011)
文摘The self-similar is a common phenomena arising in the field of geology. It has been shown that geochemical element data, mineral deposits, and spacial distribution conform to a fractal structure. A fractal distribution requires that the number of objects larger than a specified size have a power-law dependence on size. This paper shows that a number of distributions, including power-function, Pareto, lognormal, and Zipf, display fractal properties under certain conditions and that this may be used as the mathematical basis for developing fractal models for data exhibiting such distributions. The summation method is developed on the basis of fractal models to determine thresholds for Au data in Shandong Province, China. The anomalous area is enclosed by contours which have contour values greater than or equal to threshold (200 × 10^- 9) and contains known large-sized and super large-sized gold mineral deposits.
基金Project supported by the National Natural Science Foundation of China (No, 49971041), the National Key Basic Research Support Foundation (NKBRSF) of China (No. G1999011803) the Director Foundation of the Institute of Soil Science, CAS (No. ISSDF0004).
文摘Soil water retention characteristics are the key information required in hydrological modeling. Frac-tal models provide a practical alternative for indirectly estimating soil water retention characteristics fromparticle-size distribution data. Predictive capabilities of three fractal models, i.e, Tyler-Wheatcraft model,Rieu-Sposito model, and Brooks-Corey model, were fully evaluated in this work using experimental datafrom an international database and literature. Particle-size distribution data were firstly interpolated into20 classes using a van Genuchten-type equation. Fractal dimensions of the tortuous pore wall and the poresurface were then calculated from the detailed particle-size distribution and incorporated as a parameter infractal water retention models. Comparisons between measured and model-estimated water retention cha-racteristics indicated that these three models were applicable to relatively different soil textures and pressurehead ranges. Tyler-Wheatcraft and Brooks-Corey models led to reasonable agreements for both coarse- andmedium-textured soils, while the latter showed applicability to a broader texture range. In contrast, Rieu-Sposito model was more suitable for fine-textured soils. Fractal models produced a better estimation of watercontents at low pressure heads than at high pressure heads.
基金Supported by the National Natural Science Foundation of China (No. 29706010, No. 20203016).
文摘The surface morphology of Ti-Mg supported catalyst and the polyethyleneparticles are studied using scanning electron microscope(SEM) technology. The results show thateithen the catalyst's surface or polymer particle's surface is irregular and has fractalcharacteristics, which can be described by fractal parameter. The more interesting discovery is thatthe surface fractal dimension values of the polymer particles vary periodically with thepolymerization time. We call this phenomenon fractal evolution, which can be divided into the'revolution' stage and the 'evolution' stage. And then we present polymerization fractal growingmodel (PFGM), and successfully describe and/or predict the whole evolving process of thepolyethylene particle morphology under the different slurry polymerization (includingpre-polymerization) conditions without H_2.
基金supported by National Natural Science Foundation of China(No.51674279)China Postdoctoral Science Foundation(No.2016M602227)a grant from National Science and Technology Major Project(No.2017ZX05049-006)
文摘The paper presents a novel hydraulic fracturing model for the characterization and simulation of the complex fracture network in shale gas reservoirs. We go beyond the existing method that uses planar or orthogonal conjugate fractures for representing the ''complexity'' of the network. Bifurcation of fractures is performed utilizing the Lindenmayer system based on fractal geometry to describe the fracture propagation pattern, density and network connectivity. Four controlling parameters are proposed to describe the details of complex fractures and stimulated reservoir volume(SRV). The results show that due to the multilevel feature of fractal fractures, the model could provide a simple method for contributing reservoir volume calibration. The primary-and second-stage fracture networks across the overall SRV are the main contributions to the production, while the induced fracture network just contributes another 20% in the late producing period. We also conduct simulation with respect to different refracturing cases and find that increasing the complexity of the fracture network provides better performance than only enhancing the fracture conductivity.
文摘observations from the field and the taboratory show that en echelon fractures withinfracture zones have a foede1 within Ricdel structure’ The tensile fallure mecbanism of en echelonfractures can be described by the pile-ups of sbear crack-dislocations. A fractal model can be used tosimulate the Riedel within Xiedel geometry, allowing the direct rneasarement of tbe ftactal dimen sions of en echelon fractare systems. The energy dissipation of tbe en ccbe1on fracture system canbe deduced using a fracil damage evo1ution model which exptalns tbe evo1ution process of en eche lon fracture svstems. The fractal nature of the fractures can be used to dcrive an accurate estimateof total energy dissipation.
文摘Mineralization distributions are very heterogeneous in nature. As large orsuperlarge mineral deposits are quite rare whether in time or in space, it is difficult to detectall the largest mineral deposits in a region in a limited period of time owing to the restriction oftechnology and exploration degrees-this is called 'not all discovered'. However, all discoveredlarge, especially superlarge, mineral deposits generally have a complete census in the geologicalliteratures. On the other hand, not all discovered small mineral deposits are recorded in thegeological literatures because for economic reasons people have not much interest in them-this iscalled 'not all recorded'. This practice often results in the observation truncations, that is, thedata points near the two ends in an observable population, which is obtained by fitting a power lawsize-frequency distribution to discovered mineral deposits in a given region, show concave-downdeparture from the correlation line fitted. The authors suggest that the size and number ofundiscovered deposits may be forecast by fitting a fractal size distribution to discovered mineraldeposit sizes between the upper and lower truncation observations and then extrapolating thescale-independent area to deposit sizes larger than the upper truncation limit. Based on thestatistical results obtained by the fractal size-frequency distributions of 394 discovered golddeposits with sizes greater than 2 t Au in China and 83 known gold deposits with sizes over 0.3 t Auin the Jiaodong area of China, the authors forecast according to the present commercial standardsfor gold ores that the total resources of undiscovered gold deposits ranging in tonnage from 50 to2000 t Au are more than 4500 tin China, and that in the Jiaodong area of China the total resourcesof potential gold deposits with sizes in the range of 30 to 650 t Au are about 700 t.
基金Project(52130501)supported by the National Natural Science Foundation of ChinaProject(LY20E050012)supported by the Natural Science Foundation of Zhejiang Province,ChinaProject(Y201942581)supported by the Scientific Research Project of Education Department of Zhejiang Province,China。
文摘Without considering the influence of heat,existing fractal contact models are not applicable to analyze the contacts when the temperature changes.For this problem,the normal load model and the normal stiffness model of thermal elasto-plastic contact of rough surfaces are developed respectively in this paper.The proposed model is based on the normal contact mechanics model of fractal theory of anisotropic and thermal elasto-plastic contact theory which can be used to characterize the rough surface thermodynamic properties.Then the validity of the model is verified.Finally,the influence of main parameters on the total normal load and the whole normal stiffness of thermal elasto-plastic contact at the interface is analyzed by contact simulation.The results show that the total normal load of thermal elasto-plastic contact increases with the increases of temperature.The whole normal stiffness of thermal elasto-plastic contact increases with increasing coefficient of linear expansion,scale factor,temperature difference or fractal dimension,but decreases with increasing fractal roughness.This model expands basic theory and applications of traditional models,and can be used to calculate and analyze the contacts when the temperature changes.
基金Science and Technology Support Program of Jiangsu Province of China(No.BE2008017)
文摘Permeability is one of the key issues in the design of molds and in the molding process for composite manufacture. As a disordered fibrous assembly, 2.5- dimension (2.5 D) woven reinforcement materials have complex structure. It poses a challenge to the study of pore structure and the establishment of the theoretical permeability model. Toward addressing this problem, a powerful tool called fractal theory emerged. According to the analysis of 2.5 D woven reinforcement material stmcture using fractal theory, it is found that the structure has an obvious fractal character. Therefore, a permeability fractal model of 2.5D woven reinforcement material was established by cormbining the Hagen-Poiseulle equation with Darcy law according to the capillary vessel fractal model in this paper. The permeability was expressed as a function of the fractal dimension and microstructure parameter of the porous media in this model. The theoretical model is verified by experimental tests and the measurement data are in good agreement with the results obtained from the fractal medel .
基金Project supported by Chinese National High Technology Research and Development (863) Program (Grant No. 2007AA12Z170)National Natural Science Foundation of China (Grant No. 40706058)+1 种基金Wuhan Youth Science and Technology Chen Guang Program(Grant No. 200850731388)the wind and waves component of the Canadian Space Agency GRIP project entitled ‘Building Satellite Data into Fisheries and Oceans Operational Systems’
文摘Using the theory of nonlinear interactions between long and short waves, a nonlinear fractal sea surface model is presented for a one dimensional deep sea. Numerical simulation results show that spectra intensity changes at different locations (in both the wave number domain and temporal-frequency domain), and the system obeys the energy conservation principle. Finally, a method to limit the fractal parameters is also presented to ensure that the model system does not become ill-posed,
基金Supported by the National Natural Science Foundation of China(No.51176096)
文摘The char combustion mechanisms were analyzed and a comprehensive fractal char combustion model was developed to give a better understanding and better predictions of the char combustion characteristics. Most of the complex factors affecting the char combustion were included, such as the coupling effects between the pore diffusion and the chemical reactions, the evolution of the char pore structures and the variation of the apparent reaction order during combustion, the CO/CO_2 ratio in the combustion products and the correction for oxy-char combustion. Eleven different chars were then combusted in two drop tube furnaces with the conversions of the partly burned char samples measured by thermogravimetric analysis. The combustion processes of these chars were simulated with the predicted char conversions matching very well with the measured data which shows that this char combustion model has good accuracy. The apparent reaction order of the char combustion decreases, stabilizes and then increases during the combustion process. The combustion rates in the oxy-mode are generally slower than in the air-mode and the effect of the char-CO_2 gasification reaction becomes obvious only when the temperature is relatively high and the O_2 concentration is relatively low.
文摘An enzyme is a kind of protein with catalytic activity and long chain,and its structure and shape are determined by the hybridized state of atomic orbital.The fractal dimension(D_f)is closely related to the hybridization,e.g.D_f=2ln2/ln[2(1+α/(1-α))]for the spa type, where a denotes the fraction of the s orbital in the hybridized molecular orbital.This relationship and the five fractal theorems introduced by the present paper play an important role in the investigations of the model of imitative enzyme.
文摘Anomaly separation using geochemical data often involves operations in the frequency domain, such as filtering and reducing noise/signal ratios. Unfortunately, the abrupt edge truncation of an image along edges and holes (with missing data) often causes frequency distribution distortion in the frequency domain. For example, bright strips are commonly seen in frequency distribution when using a Fourier transform. Such edge effect distortion may affect information extraction results; sometimes severely, depending on the edge abruptness of the image. Traditionally, edge effects are reduced by smoothing the image boundary prior to applying a Fourier transform. Zero-padding is one of the most commonly used smoothing methods. This simple method can reduce the edge effect to some degree but still distorts the image in some cases. Moreover, due to the complexity of geoscience images, which can include irregular shapes and holes with missing data, zero-padding does not always give satisfactory results. This paper proposes the use of decay functions to handle edge effects when extracting information from geoscience images. As an application, this method has been used in a newly developed multifractal method (S-A) for separating geochemical anomalies from background patterns. A geochemical dataset chosen from a mineral district in Nova Scotia, Canada was used to validate the method.
文摘The effect of geological uncertainty on the development and mining of underground coal deposits is a key issue for longwall mining, as the presence of faults generates substantial monetary losses. This paper develops a method for the conditional simulation of fault systems and uses the method to quantify and assess fault uncertainty. The method is based on the statistical modelling of fault attributes and the simulation of the locations of the centres of the fault traces. Fault locations are generated from the thinning of a Poisson process using a spatially correlated probability field. The proposed algorithm for simulating fault traces takes into account soft data such as geological interpretations and geomechanical data. The simulations generate realisations of fault populations that reproduce observed faults, honour the statistics of the fault attributes, and respect the constraints of soft data, providing the means to thereby model and assess the related fault uncertainty.
文摘One of the essential tasks accelerate the decision-making process in mineral exploration projects is ranking anomalous areas.In this study,we used fourteen geologic maps(at scale 1:100,000)in areas where systematic geochemical explorations were conducted in the Fariman-Kashmar axis in northeast Iran to conduct the anomaly ranking.On all these maps,samples were consistently prepared to be analyzed through statistical and geostatistical methods.At first,anomaly separation was carried out by fractal methods that resulted in the detection of 308 anomalous samples in 128 areas.These samples were classified into three groups of first,second,and thirdorder anomalies,whose number of anomalous samples were calculated based on this ranking technique.Three factors,including the average concentration of each anomaly,its surface area,and the number of its samples,were used to rank the areas.According to this technique,the maximum anomaly score obtained was 172 for the Taknar area,and the minimum score was 3 for several areas.To validate the ranking results,some exploration operations were carried out in some of these anomalous areas in which mining operations started later.Several significant gold anomalous areas were introduced,which is considered an important result of this study.