A dual motion combined by radial and tangential fretting was achieved on a modified hydraulic fretting wear test rig. The dual motion fretting tests of medical pure titanium (TA2) and Ti6Al7Nb alloy in artificial sa...A dual motion combined by radial and tangential fretting was achieved on a modified hydraulic fretting wear test rig. The dual motion fretting tests of medical pure titanium (TA2) and Ti6Al7Nb alloy in artificial saliva were carried out under varied contact inclined angles (45° and 60°), and the maximum imposed load varied from 200 to 400 N at a constant loading speed of 6 mm/min. The effects of the cyclic vertical force and the inclined angle were investigated in detail. Dynamic analysis in combination with microscopic examinations shows that the wear scar and plastic deformation accumulation present a strong asymmetry. The Ti6Al7Nb has better wear resistance than TA2 in artificial saliva at the same test parameters, and with the increase of inclined angle and decrease of imposed load, the wear reduces accordingly. The wear mechanisms of pure titanium TA2 and Ti6Al7Nb alloy under the condition of dual motion fretting in artificial saliva are abrasive wear, oxidative wear and delamination.展开更多
In pressurized water reactor(PWR),fretting wear is one of the main causes of fuel assembly failure.Moreover,the operation condition of cladding is complex and harsh.A unique fretting damage test equipment was develope...In pressurized water reactor(PWR),fretting wear is one of the main causes of fuel assembly failure.Moreover,the operation condition of cladding is complex and harsh.A unique fretting damage test equipment was developed and tested to simulate the fretting damage evolution process of cladding in the PWR environment.It can simulate the fretting wear experiment of PWR under different temperatures(maximum temperature is 350℃),displacement amplitude,vibration frequency,and normal force.The fretting wear behavior of Zr-4 alloy under different temperature environments was tested.In addition,the evolution of wear scar morphology,profile,and wear volume was studied using an optical microscope(OM),scanning electron microscopy(SEM),and a 3D white light interferometer.Results show that higher water temperature evidently decreased the cladding wear volume,the wear mechanism of Zr-4 cladding changed from abrasive wear to adhesive wear and the formation of an oxide layer on the wear scar reduced the wear volume and maximum wear depth.展开更多
In this paper,a numerical model of fretting fatigue analysis of cablewire and the fretting fatigue damage constitutive model considering the multi-axis effect were established,and the user material subroutine UMAT was...In this paper,a numerical model of fretting fatigue analysis of cablewire and the fretting fatigue damage constitutive model considering the multi-axis effect were established,and the user material subroutine UMAT was written.Then,the constitutive model of wear morphology evolution of cable wire and the constitutive model of pitting evolution considering the mechanical-electrochemical effect were established,respectively.The corresponding subroutines UMESHMOTION_Wear and UMESHMOTION_Wear_Corrosion were written,and the fretting fatigue lifewas further predicted.The results showthat the numerical simulation life obtained by the programin this paper has the same trend as the tested one;the error is only about 0.7%in the medium life area;When the normal contact force increases from 120 to 240 N,the fretting life of cable wire decreases by 25%;When the evolution of wear morphology and corrosion effect are considered simultaneously,the depth of the wear zone exceeds 0.08mm after 600,000 loads,which ismuch larger than 0.04 mmwhen only the evolution of wear morphology is considered.When the evolution of wear morphology and corrosion morphology is considered simultaneously,the damage covers the whole contact surface after 300,000 loads,and the penetrating damage zone forms after 450,000 loads,which is obviously faster than that when only the wearmorphology evolution is considered.Themethod proposed in this paper can provide a feasible numerical simulation scheme for the visualization of the damage process and accurate life prediction of cable-supported bridges.展开更多
The torsional fretting wear tests of 7075 aluminum alloy flat against 52100 steel ball in dry condition were carried out on a new high-precision torsional fretting-wear tester.The kinetics behaviors and damage mechani...The torsional fretting wear tests of 7075 aluminum alloy flat against 52100 steel ball in dry condition were carried out on a new high-precision torsional fretting-wear tester.The kinetics behaviors and damage mechanism of 7075 aluminum alloy under different angular displacement amplitudes were investigated in detail.The results show that the torsional fretting running behaviors of 7075 aluminum alloy can be defined by three fretting regimes(i.e.partial slip regime(PSR),mixed fretting regime(MFR) and slip regime(SR)) with the increase of angular displacement amplitudes.In PSR,the damage occurs at the lateral portion of the contact zone with a slight annular shape.However,in MFR and SR,more severe damages are observed and the debris layer covers the wear scars.Friction torque and dissipation energy which are strongly dependent upon the imposed angular displacement amplitudes and presented in three stages were discussed in detail.The mechanisms of torsional fretting wear of aluminum alloy are mainly oxidative wear,abrasive wear and delamination in the three fretting regimes.In addition,the oxidative debris plays an important role during the torsional fretting wear processes.展开更多
Given that fretting wear causes failure in steel wires, we carried out tangential fretting wear tests of steel wires on a self-made fretting wear test rig under contact loads of 9 and 29 N and fretting amplitudes rang...Given that fretting wear causes failure in steel wires, we carried out tangential fretting wear tests of steel wires on a self-made fretting wear test rig under contact loads of 9 and 29 N and fretting amplitudes ranging from 5 to 180 μm. We observed morphologies of fretted steel wire surfaces on an S-3000N scanning electron microscope in order to analyze fretting wear mecha-nisms. The results show that the fretting regime of steel wires transforms from partial slip regime into mixed fretting regime and gross slip regime with an increase in fretting amplitudes under a given contact load. In partial slip regime, the friction coefficient has a relatively low value. Four stages can be defined in mixed fretting and gross slip regimes. The fretting wear of steel wires in-creases obviously with increases in fretting amplitudes. Fretting scars present a typical morphology of annularity, showing slight damage in partial slip regime. However, wear clearly increases in mixed fretting regime where wear mechanism is a combination of plastic deformation, abrasive wear and oxidative wear. In gross slip regime, more severe degradation is present than in the other regimes. The main fretting wear mechanisms of steel wires are abrasive wear, surface fatigue and friction oxidation.展开更多
The fretting wear behavior of 0Cr20Ni32AlTi alloy was investigated with crossed cylinder contact under 80 N at 300 and 400 °C.Wear scar and debris were analyzed systematically by scanning electron microscopy and ...The fretting wear behavior of 0Cr20Ni32AlTi alloy was investigated with crossed cylinder contact under 80 N at 300 and 400 °C.Wear scar and debris were analyzed systematically by scanning electron microscopy and X-ray photoelectron spectroscopy.The results show that the friction logs are mixed fretting regime and gross slip regime with the magnitudes of displacement of 10 and 20 μm,respectively.Severe wear and friction oxidation occur on the material surface.A large number of granular debris produced in the fretting process can be easily congregated and adhered at the contact zone after repeated crushes.The resultant of friction oxidation is mainly composed of Fe3O4,Fe2O3,Cr2O3 and NiO.Temperature and friction are the major factors affecting the oxidation reaction rate.The fretting friction effect can enhance the oxidation reaction activity of surface atoms of 0Cr20Ni32AlTi alloy and reduce the oxidation activation energy.As result,the oxidation reaction rate is accelerated.展开更多
Various doses of nitrogen ions were implanted into the surface of pure titanium, Ti6Al7Nb and Ti6Al4V, by plasma immersion ion implantation. Torsional fretting wear tests involving flat specimens of no-treated and tre...Various doses of nitrogen ions were implanted into the surface of pure titanium, Ti6Al7Nb and Ti6Al4V, by plasma immersion ion implantation. Torsional fretting wear tests involving flat specimens of no-treated and treated titanium, as well as its alloys, against a ZrO2 ball contact were performed on a torsional fretting wear test rig using a simulated physiological medium of serum solution. The treated surfaces were characterized, and the effect of implantation dose on torsional fretting behavior was discussed in detail. The results showed that the torsional fretting running and damage behavior of titanium and its alloys were strongly dependent on the dose of the implanted nitrogen ions and the angular displacement amplitude. The torsional fretting running boundary moved to smaller angular displacement amplitude, and the central light damage zone decreased, as the ion dose increased. The wear mechanisms of titanium and its alloys were oxidative wear, abrasive wear and delamination, with abrasive wear as the most common mechanism of the ion implantation layers.展开更多
The friction and wear behaviors of Inconel 690 flat against Si3Ni4 ball were investigated using a hydraulic fretting test rig equipped with a liquid container device. The loads of 20-80 N, reciprocating amplitudes of ...The friction and wear behaviors of Inconel 690 flat against Si3Ni4 ball were investigated using a hydraulic fretting test rig equipped with a liquid container device. The loads of 20-80 N, reciprocating amplitudes of 80-200 μm and two different environments (distilled water and hydrazine solution at temperatures from 25 to 90 ℃) were selected. The results show that the ratio of Ft/Fn is lower in distilled water than that in hydrazine solution at the same temperature in the slip regime. Both the ratio of Ft/Fn and wear volume gradually increase with increasing medium temperature under the given normal load and displacement amplitude. Besides the displacement amplitude and load, temperature also plays an important role for wear behavior of Inconel 690 material. The increase of temperature could reduce the concentration of dissolved oxygen, and promote the absorption reaction of hydrazine and dissolved oxygen. As a result, the oxidative corrosion rate is obviously lowered. Abrasive wear and delamination wear are the main mechanisms of Inconel 690 in distilled water. However, in hydrazine solution the cracks accompanied by abrasive wear and delamination wear are the main mechanisms.展开更多
This study investigated the fretting wear and fatigue of full-scale railway axles.Fatigue tests were conducted on full-scale railway axles,and the fretting wear and fretting fatigue in the fretted zone of the railway ...This study investigated the fretting wear and fatigue of full-scale railway axles.Fatigue tests were conducted on full-scale railway axles,and the fretting wear and fretting fatigue in the fretted zone of the railway axles were analysed.Three-dimensional finite element models were established based on the experimental results.Then,multi-axial fatigue parameters and a linear elastic fracture mechanics-based approach were used to investigate the fretting fatigue crack initiation and propagation,respectively,in which the role of the fretting wear was taken into account.The experimental and simulated results showed that the fretted zone could be divided into zones I-III according to the surface damage morphologies.Fretting wear alleviated the stress concentration near the wheel seat edge and resulted in a new stress concentration near the worn/unworn boundary in zone II,which greatly promoted the fretting crack initiation at the inner side of the fretted zone.Meanwhile,the stress concentration also increased the equivalent stress intensity factor range DKeq below the mating surface,and thus promoted the propagation of fretting fatigue crack.Based on these findings,the effect of the stress redistribution resulting from fretting wear is suggested to be taken into account when evaluating the fretting fatigue in railway axles.展开更多
The introduction of surface engineering is expected to be an effective strategy against fretting damage. A large number of studies show that the low gas multi-component (such as carbon, nitrogen, sulphur and oxygen, ...The introduction of surface engineering is expected to be an effective strategy against fretting damage. A large number of studies show that the low gas multi-component (such as carbon, nitrogen, sulphur and oxygen, etc) thermo-chemical treatment(LTGMTT) can overcome the brittleness of nitriding process, and upgrade the surface hardness and improve the wear resistance and fatigue properties of the work-pieces significantly. However, there are few reports on the anti-fretting properties of the LTGMTT modified layer up to now, which limits the applications of fretting. So this paper discusses the fretting wear behavior of modified layer on the surface of LZ50 (0.48%C) steel prepared by low temperature gas multi-component thermo-chemical treatment (LTGMTT) technology. The fretting wear tests of the modified layer flat specimens and its substrate (LZ50 steel) against 52100 steel balls with diameter of 40 mm are carried out under normal load of 150 N and displacement amplitudes varied from 2 μm to 40 μm. Characterization of the modified layer and dynamic analyses in combination with microscopic examinations were performed through the means of scanning electron microscope(SEM), optical microscope(OM), X-ray diffraction(XRD) and surface profilometer. The experimental results showed that the modified layer with a total thickness of 60 μm was consisted of three parts, i.e., loose layer, compound layer and diffusion layer. Compared with the substrate, the range of the mixed fretting regime(MFR) of the LTGMTT modified layer diminished, and the slip regime(SR) of the modified layer shifted to the direction of smaller displacement amplitude. The coefficient of friction(COF) of the modified layer was lower than that of the substrate in the initial stage. For the modified layer, the damage in partial slip regime(PSR) was very slight. The fretting wear mechanism of the modified layer both in MFR and SR was abrasive wear and delamination. The modified layer presented better wear resistance than the substrate in PSR and MFR; however, in SR, the wear resistance of the modified layer decreased with the increase of the displacement amplitudes. The experimental results can provide some experimental bases for promoting industrial application of LTGMTT modified layer in anti-fretting wear.展开更多
Taking the typical face gear connection structure of the combined rotor as the research object,this paper studies the distribution rules of the contact state,contact stress and slip distance of the contact tooth surfa...Taking the typical face gear connection structure of the combined rotor as the research object,this paper studies the distribution rules of the contact state,contact stress and slip distance of the contact tooth surface of face gear under different centrifugal force and temperature conditions by using the finite element method,in order to improve the reliability of face gear connection structure.And the influence of centrifugal force and temperature on the maximum wear depth of the tooth surface is studied based on the fretting wear model proposed by McColl.Results show that:(1)The external diameter has an opening phenomenon on the contact surface of the face gear under the centrifugal effect,which reduces the load-bearing area;(2)The contact stress at the inner root of the face gear is the largest and the wear is the most serious;(3)The temperature field causes the contact surface to be thermally expanded,resulting in the large uneven deformation,and the tooth surface appears drum-shape;(4)The maximum contact stress and the maximum wear depth occur in the middle of the tooth root;(5)As the temperature increases,the maximum wear depth of the tooth surface increases significantly.Consequently,reducing temperature of the combined rotor plays an important role in effectively reducing the wear of the face gear and improving the connection life of face gear connection structure.展开更多
Fretting oxidization is a main form of fretting chemical damage. In this paper, a theory analysis was proceeded for several key factors affecting this damage and one kind of fretting map based on the co-effect of thos...Fretting oxidization is a main form of fretting chemical damage. In this paper, a theory analysis was proceeded for several key factors affecting this damage and one kind of fretting map based on the co-effect of those key factors were presented. By the map, not only the mode of fretting oxide can be learned better, but also it is possible to reduce fretting damage through changing working and material parameters reasonably.展开更多
An extensive study of the composition distribution, bonding strength, hardness, and wear resistance of a 0Cr18Ni9 film deposited on a Ti811 titanium alloy surface by ion beam enhanced deposition (IBED) is presented....An extensive study of the composition distribution, bonding strength, hardness, and wear resistance of a 0Cr18Ni9 film deposited on a Ti811 titanium alloy surface by ion beam enhanced deposition (IBED) is presented. Shot peening was introduced to post-treat the modified surface to synergistically improve the fretting fatigue resistance of the Ti811 alloy at 350°C. The results indicate that the 0Cr18Ni9 film with high density, small grain size, low void radio, and high bonding strength can be prepared using IBED. As a result, the hardness, wear resistance, and fretting fatigue resistance of the Ti811 alloy are increased to a remarkable extent. Compared with shot peening treatment or IBED 0Cr18Ni9 film alone, the Ti811 titanium alloy with an IBED 0Cr18Ni9 film combined with shot peening shows a higher fretting fatigue resistance at 350°C. This is due to the synergistic effect of the high wear resistance of the film surface and the residual compressive stress induced by shot peening.展开更多
The impact fretting wear has largely occurred at nuclear power device induced by the flow-induced vibra- tion, and it will take potential hazards to the service of the equipment. However, the present study focuses on ...The impact fretting wear has largely occurred at nuclear power device induced by the flow-induced vibra- tion, and it will take potential hazards to the service of the equipment. However, the present study focuses on the tangential fretting wear of alloy 690 tubes. Research on impact fretting wear of alloy 690 tubes is limited and the related research is imminent. Therefore, impact fretting wear behavior of alloy 690 tubes against 304 stainless steels is investigated. Deionized water is used to simulate the flow environment of the equipment, and the dry envi- ronment is used for comparison. Varied analytical tech- niques are employed to characterize the wear and tribochemical behavior during impact fretting wear. Char- acterization results indicate that cracks occur at high impact load in both water and dry equipment; however, the water as a medium can significantly delay the cracking time. The crack propagation behavior shows a jagged shape in the water, but crack extended disorderly in dry equip- ment because the water changed the stress distribution and retarded the friction heat during the wear process. The SEM and XPS analysis shows that the main failure mechanisms of the tube under impact fretting are fatiguewear and friction oxidation. The effect of medium(water) on fretting wear is revealed, which plays a potential and promising role in the service of nuclear power device and other flow equipments.展开更多
Micro-arc oxidation(MAO)coating was prepared on Ti6Al4V alloy surface and its characterizations were detected by Vickers hardness tester,profilometer,scanning electric microscope(SEM),energy dispersive X-ray spectrome...Micro-arc oxidation(MAO)coating was prepared on Ti6Al4V alloy surface and its characterizations were detected by Vickers hardness tester,profilometer,scanning electric microscope(SEM),energy dispersive X-ray spectrometer(EDX)and X-ray diffractometer(XRD).Fretting wear behaviors of the coating and its substrate were comparatively tested without lubrication under varied displacement amplitudes(D)in a range of 3-40μm,constant normal load(Fn)of 300 N and frequency of 5 Hz.The results showed that the MAO coating,presenting rough and porous surface and high hardness,mainly consisted of rutile and anatase TiO2 phases.Compared with the substrate,the MAO coating could shift the mixed fretting regime(MFR)and slip regime(SR)to a direction of smaller displacement amplitude.In the partial slip regime(PSR),lower friction coefficients and slight damage appeared due to the coordination of elastic deformation of contact zones.In the MFR,the friction coefficient of the coating was lower than that of the substrate as a result of the prevention of plastic deformation by the hard ceramic surface.With the increase of the displacement amplitude,the degradation of the MAO coating and the substrate increased extremely.The fretting wear mechanisms of the coating were abrasive wear and delamination with some material transfer of specimen.In addition,the coating presented a better property for alleviating fretting wear.展开更多
The effects of amplitudes, normal loads and laser beam quenching on the fretting wear of titanium alloy (TC11) were experimentally investigated on SRV fretting wear test machine in air, at room temperature and without...The effects of amplitudes, normal loads and laser beam quenching on the fretting wear of titanium alloy (TC11) were experimentally investigated on SRV fretting wear test machine in air, at room temperature and without lubrication conditions. The purpose of this study is to learn the rules of fretting wear in a disk blades dovetail joint of an aircraft turbine so the test parameters are determined based on the relative movement and load in the joint. The wear depths are measured by a profilometer, the worn areas are observed and measured by an optical microscopy, and the microtopography of the worn scar is studied by scanning electron microscopy (SEM) .The tests and observations state clearly that fretting wear rate (FWR) is heavily influenced by sliding amplitude(SA) and load. In this experiment, if SA is greater than 60 μm at Hertz contact stress 105 MPa, the FWR is much higher, and the SEM makes it known that the wear mechanism is the combination of adhesive and contact fatigue in the above test conditions. In contrast, if SA smaller, the FWR lower too, and the SEM suggests that the major wear mechanism is contact fatigue. The experiments also reveal that the laser beam quenching greatly improve the fretting wear resistance of titanium alloy, especially at heavy load and large amplitude.展开更多
At present,there are many studies on the residual stress field and plastic strain field introduced by surface strengthening,which can well hinder the initiation of early fatigue cracks and delay the propagation of fat...At present,there are many studies on the residual stress field and plastic strain field introduced by surface strengthening,which can well hinder the initiation of early fatigue cracks and delay the propagation of fatigue cracks.However,there are few studies on the effects of these key factors on fretting wear.In the paper,shot-peening(SP)and ultrasonic surface rolling process(USRP)were performed on Ti-6Al-4V plate specimens.The surface hardness and residual stresses of the material were tested by vickers indenter and X-ray diffraction residual stress analyzer.Microhardness were measured by HXD-1000MC/CD micro Vickers hardness tester.The effects of different surface strengthening on its fretting fatigue properties were verified by fretting fatigue experiments.The fretting fatigue fracture surface and wear morphology of the specimens were studied and analyzed by means of microscopic observation,and the mechanism of improving fretting fatigue life by surface strengthening process was further explained.After USRP treatment,the surface roughness of Ti-6Al-4V is significantly improved.In addition,the microhardness of the specimen after SP reaches the maximum at 80μm from the surface,which is about 123%higher than that of the AsR specimen.After USRP,it reaches the maximum at 150μm from the surface,which is about 128%higher than that of AsR specimen.It is also found that the residual compressive stress of the specimens treated by USRP and SP increases first and then decreases with the depth direction,and the residual stress reaches the maximum on the sub surface.The USRP specimen reaches the maximum value at 0.18 mm,about−550 MPa,while the SP specimen reaches the maximum value at 0.1 mm,about−380 MPa.The fretting fatigue life of Ti-6Al-4V effectively improved after USRP and SP.The surface integrity of specimens after USRP is the best,which has deeper residual compressive stress layer and more refined grain.In this paper,a fretting wear device is designed to carry out fretting fatigue experiments on specimens with different surface strengthening.展开更多
The tribology behaviors of Ti6Al7Nb,its alloy with N-ion implantation,and its alloy with diamond-like carbon(DLC)coating were investigated in artificial saliva.Fretting wear tests of untreated,N-ion implanted and DLC ...The tribology behaviors of Ti6Al7Nb,its alloy with N-ion implantation,and its alloy with diamond-like carbon(DLC)coating were investigated in artificial saliva.Fretting wear tests of untreated,N-ion implanted and DLC coated Ti6Al7Nb alloys plate against a Si3N4ball were carried out on a reciprocating sliding fretting wear test rig.Based on the analysis of X-ray diffraction,Raman spectroscopy,3-D profiler,SEM morphologies and frictional kinetics behavior analysis,the damage behavior of surface modification layer was discussed in detail.The results indicated that the fretting wear behavior of Ti6Al7Nb alloy with N-ion implantation was increased with the dose increase of the implanted nitrogen ions.Moreover,the DLC-coated Ti6Al7Nb alloy with low ion implantation could improve the fretting wear behavior greatly.In addition,the Ti6Al7Nb with DLC coating had better ncorrosion resistance due to the special compact structure.All results suggested that the Ti6Al7Nb with DLC coating had better wear resistance than that with N-ion implantation in artificial saliva.展开更多
A new continuum damage mechanics model for fretting fatigue life prediction is established. In this model, the damage evolution rate is described by two kinds of quantities. One is associated with the cyclic stress ch...A new continuum damage mechanics model for fretting fatigue life prediction is established. In this model, the damage evolution rate is described by two kinds of quantities. One is associated with the cyclic stress characteristics obtained by the finite element (FE) analysis, and the other is associated with the material fatigue property identified from the fatigue test data of standard specimens. The wear is modeled by the energy wear law to simulate the contact geometry evolution. A two-dimensional (2D) plane strain FE implementation of the damage mechanics model and the energy wear model is presented in the platform of ABAQUS to simulate the evolutions of the fatigue damage and the wear scar. The effect of the specimen thickness is also investigated. The predicted results of the crack initiation site and the fretting fatigue life agree well with available experimental data. Comparisons are made with the critical plane Smith- Watson-Topper (SWT) method.展开更多
基金Project(81170996)supported by the National Natural Science Foundation of China
文摘A dual motion combined by radial and tangential fretting was achieved on a modified hydraulic fretting wear test rig. The dual motion fretting tests of medical pure titanium (TA2) and Ti6Al7Nb alloy in artificial saliva were carried out under varied contact inclined angles (45° and 60°), and the maximum imposed load varied from 200 to 400 N at a constant loading speed of 6 mm/min. The effects of the cyclic vertical force and the inclined angle were investigated in detail. Dynamic analysis in combination with microscopic examinations shows that the wear scar and plastic deformation accumulation present a strong asymmetry. The Ti6Al7Nb has better wear resistance than TA2 in artificial saliva at the same test parameters, and with the increase of inclined angle and decrease of imposed load, the wear reduces accordingly. The wear mechanisms of pure titanium TA2 and Ti6Al7Nb alloy under the condition of dual motion fretting in artificial saliva are abrasive wear, oxidative wear and delamination.
基金Supported by National Key R&D Program of China(Grant No.2022YFB3401901)Key Program of National Natural Science Foundation of China(Grant No.U2067221)+2 种基金Sichuan Provincial Science and Technology Planning Project(Grant Nos.2022JDJQ0019 and 2022ZYD0029)Funds for China Postdoctoral Science Foundation(Grant No.2022M713008)Sichuan Provincial Innovative Talent Funding Project for Postdoctoral Fellows(Grant No.BX202225).
文摘In pressurized water reactor(PWR),fretting wear is one of the main causes of fuel assembly failure.Moreover,the operation condition of cladding is complex and harsh.A unique fretting damage test equipment was developed and tested to simulate the fretting damage evolution process of cladding in the PWR environment.It can simulate the fretting wear experiment of PWR under different temperatures(maximum temperature is 350℃),displacement amplitude,vibration frequency,and normal force.The fretting wear behavior of Zr-4 alloy under different temperature environments was tested.In addition,the evolution of wear scar morphology,profile,and wear volume was studied using an optical microscope(OM),scanning electron microscopy(SEM),and a 3D white light interferometer.Results show that higher water temperature evidently decreased the cladding wear volume,the wear mechanism of Zr-4 cladding changed from abrasive wear to adhesive wear and the formation of an oxide layer on the wear scar reduced the wear volume and maximum wear depth.
基金supported by the grant from National Key Research and Development Program of China (Grant No.2021YFF0602005)National Natural Science Foundation of China (No.51678135),which are gratefully acknowledged.
文摘In this paper,a numerical model of fretting fatigue analysis of cablewire and the fretting fatigue damage constitutive model considering the multi-axis effect were established,and the user material subroutine UMAT was written.Then,the constitutive model of wear morphology evolution of cable wire and the constitutive model of pitting evolution considering the mechanical-electrochemical effect were established,respectively.The corresponding subroutines UMESHMOTION_Wear and UMESHMOTION_Wear_Corrosion were written,and the fretting fatigue lifewas further predicted.The results showthat the numerical simulation life obtained by the programin this paper has the same trend as the tested one;the error is only about 0.7%in the medium life area;When the normal contact force increases from 120 to 240 N,the fretting life of cable wire decreases by 25%;When the evolution of wear morphology and corrosion effect are considered simultaneously,the depth of the wear zone exceeds 0.08mm after 600,000 loads,which ismuch larger than 0.04 mmwhen only the evolution of wear morphology is considered.When the evolution of wear morphology and corrosion morphology is considered simultaneously,the damage covers the whole contact surface after 300,000 loads,and the penetrating damage zone forms after 450,000 loads,which is obviously faster than that when only the wearmorphology evolution is considered.Themethod proposed in this paper can provide a feasible numerical simulation scheme for the visualization of the damage process and accurate life prediction of cable-supported bridges.
基金Project(2007CB714704) supported by the National Basic Research Program of ChinaProjects(50775192,50821063) supported by the National Natural Science Foundation of China
文摘The torsional fretting wear tests of 7075 aluminum alloy flat against 52100 steel ball in dry condition were carried out on a new high-precision torsional fretting-wear tester.The kinetics behaviors and damage mechanism of 7075 aluminum alloy under different angular displacement amplitudes were investigated in detail.The results show that the torsional fretting running behaviors of 7075 aluminum alloy can be defined by three fretting regimes(i.e.partial slip regime(PSR),mixed fretting regime(MFR) and slip regime(SR)) with the increase of angular displacement amplitudes.In PSR,the damage occurs at the lateral portion of the contact zone with a slight annular shape.However,in MFR and SR,more severe damages are observed and the debris layer covers the wear scars.Friction torque and dissipation energy which are strongly dependent upon the imposed angular displacement amplitudes and presented in three stages were discussed in detail.The mechanisms of torsional fretting wear of aluminum alloy are mainly oxidative wear,abrasive wear and delamination in the three fretting regimes.In addition,the oxidative debris plays an important role during the torsional fretting wear processes.
基金supported by the National Natural Science Foundation of China (No 50875252)the Program for New Century Excellent Talents in Universities (NoNCET-06-0479)the Natural Science Foundation of Jiangsu Province (NoBK2008005)
文摘Given that fretting wear causes failure in steel wires, we carried out tangential fretting wear tests of steel wires on a self-made fretting wear test rig under contact loads of 9 and 29 N and fretting amplitudes ranging from 5 to 180 μm. We observed morphologies of fretted steel wire surfaces on an S-3000N scanning electron microscope in order to analyze fretting wear mecha-nisms. The results show that the fretting regime of steel wires transforms from partial slip regime into mixed fretting regime and gross slip regime with an increase in fretting amplitudes under a given contact load. In partial slip regime, the friction coefficient has a relatively low value. Four stages can be defined in mixed fretting and gross slip regimes. The fretting wear of steel wires in-creases obviously with increases in fretting amplitudes. Fretting scars present a typical morphology of annularity, showing slight damage in partial slip regime. However, wear clearly increases in mixed fretting regime where wear mechanism is a combination of plastic deformation, abrasive wear and oxidative wear. In gross slip regime, more severe degradation is present than in the other regimes. The main fretting wear mechanisms of steel wires are abrasive wear, surface fatigue and friction oxidation.
基金Project (51075342) supported by the National Natural Science Foundation of ChinaProject (2007CB714704) supported by the National Basic Research Program of China
文摘The fretting wear behavior of 0Cr20Ni32AlTi alloy was investigated with crossed cylinder contact under 80 N at 300 and 400 °C.Wear scar and debris were analyzed systematically by scanning electron microscopy and X-ray photoelectron spectroscopy.The results show that the friction logs are mixed fretting regime and gross slip regime with the magnitudes of displacement of 10 and 20 μm,respectively.Severe wear and friction oxidation occur on the material surface.A large number of granular debris produced in the fretting process can be easily congregated and adhered at the contact zone after repeated crushes.The resultant of friction oxidation is mainly composed of Fe3O4,Fe2O3,Cr2O3 and NiO.Temperature and friction are the major factors affecting the oxidation reaction rate.The fretting friction effect can enhance the oxidation reaction activity of surface atoms of 0Cr20Ni32AlTi alloy and reduce the oxidation activation energy.As result,the oxidation reaction rate is accelerated.
基金Projects(U1530136,51375407)supported by the National Natural Science Foundation of China
文摘Various doses of nitrogen ions were implanted into the surface of pure titanium, Ti6Al7Nb and Ti6Al4V, by plasma immersion ion implantation. Torsional fretting wear tests involving flat specimens of no-treated and treated titanium, as well as its alloys, against a ZrO2 ball contact were performed on a torsional fretting wear test rig using a simulated physiological medium of serum solution. The treated surfaces were characterized, and the effect of implantation dose on torsional fretting behavior was discussed in detail. The results showed that the torsional fretting running and damage behavior of titanium and its alloys were strongly dependent on the dose of the implanted nitrogen ions and the angular displacement amplitude. The torsional fretting running boundary moved to smaller angular displacement amplitude, and the central light damage zone decreased, as the ion dose increased. The wear mechanisms of titanium and its alloys were oxidative wear, abrasive wear and delamination, with abrasive wear as the most common mechanism of the ion implantation layers.
基金Project(51075342)supported by the National Natural Science Foundation of China
文摘The friction and wear behaviors of Inconel 690 flat against Si3Ni4 ball were investigated using a hydraulic fretting test rig equipped with a liquid container device. The loads of 20-80 N, reciprocating amplitudes of 80-200 μm and two different environments (distilled water and hydrazine solution at temperatures from 25 to 90 ℃) were selected. The results show that the ratio of Ft/Fn is lower in distilled water than that in hydrazine solution at the same temperature in the slip regime. Both the ratio of Ft/Fn and wear volume gradually increase with increasing medium temperature under the given normal load and displacement amplitude. Besides the displacement amplitude and load, temperature also plays an important role for wear behavior of Inconel 690 material. The increase of temperature could reduce the concentration of dissolved oxygen, and promote the absorption reaction of hydrazine and dissolved oxygen. As a result, the oxidative corrosion rate is obviously lowered. Abrasive wear and delamination wear are the main mechanisms of Inconel 690 in distilled water. However, in hydrazine solution the cracks accompanied by abrasive wear and delamination wear are the main mechanisms.
基金the Independent Research Project of the State Key Laboratory of Traction Power(No.2018TPL_Z01)the National Natural Science Foundation of China(No.51375406)the Fundamental Research Funds for the Central Universities(No.2682018CX68).
文摘This study investigated the fretting wear and fatigue of full-scale railway axles.Fatigue tests were conducted on full-scale railway axles,and the fretting wear and fretting fatigue in the fretted zone of the railway axles were analysed.Three-dimensional finite element models were established based on the experimental results.Then,multi-axial fatigue parameters and a linear elastic fracture mechanics-based approach were used to investigate the fretting fatigue crack initiation and propagation,respectively,in which the role of the fretting wear was taken into account.The experimental and simulated results showed that the fretted zone could be divided into zones I-III according to the surface damage morphologies.Fretting wear alleviated the stress concentration near the wheel seat edge and resulted in a new stress concentration near the worn/unworn boundary in zone II,which greatly promoted the fretting crack initiation at the inner side of the fretted zone.Meanwhile,the stress concentration also increased the equivalent stress intensity factor range DKeq below the mating surface,and thus promoted the propagation of fretting fatigue crack.Based on these findings,the effect of the stress redistribution resulting from fretting wear is suggested to be taken into account when evaluating the fretting fatigue in railway axles.
基金supported by National Natural Science Foundation of China (Grant No. 50521503)National Basic Research Program of China (973 Program, Grant No. 2007CB714704)National Hi-tech Research and Development Program of China (863 Program, Grant No. 2006AA04Z406)
文摘The introduction of surface engineering is expected to be an effective strategy against fretting damage. A large number of studies show that the low gas multi-component (such as carbon, nitrogen, sulphur and oxygen, etc) thermo-chemical treatment(LTGMTT) can overcome the brittleness of nitriding process, and upgrade the surface hardness and improve the wear resistance and fatigue properties of the work-pieces significantly. However, there are few reports on the anti-fretting properties of the LTGMTT modified layer up to now, which limits the applications of fretting. So this paper discusses the fretting wear behavior of modified layer on the surface of LZ50 (0.48%C) steel prepared by low temperature gas multi-component thermo-chemical treatment (LTGMTT) technology. The fretting wear tests of the modified layer flat specimens and its substrate (LZ50 steel) against 52100 steel balls with diameter of 40 mm are carried out under normal load of 150 N and displacement amplitudes varied from 2 μm to 40 μm. Characterization of the modified layer and dynamic analyses in combination with microscopic examinations were performed through the means of scanning electron microscope(SEM), optical microscope(OM), X-ray diffraction(XRD) and surface profilometer. The experimental results showed that the modified layer with a total thickness of 60 μm was consisted of three parts, i.e., loose layer, compound layer and diffusion layer. Compared with the substrate, the range of the mixed fretting regime(MFR) of the LTGMTT modified layer diminished, and the slip regime(SR) of the modified layer shifted to the direction of smaller displacement amplitude. The coefficient of friction(COF) of the modified layer was lower than that of the substrate in the initial stage. For the modified layer, the damage in partial slip regime(PSR) was very slight. The fretting wear mechanism of the modified layer both in MFR and SR was abrasive wear and delamination. The modified layer presented better wear resistance than the substrate in PSR and MFR; however, in SR, the wear resistance of the modified layer decreased with the increase of the displacement amplitudes. The experimental results can provide some experimental bases for promoting industrial application of LTGMTT modified layer in anti-fretting wear.
基金supported by the National Natural Science of China(No.11872288)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2019JM-219)。
文摘Taking the typical face gear connection structure of the combined rotor as the research object,this paper studies the distribution rules of the contact state,contact stress and slip distance of the contact tooth surface of face gear under different centrifugal force and temperature conditions by using the finite element method,in order to improve the reliability of face gear connection structure.And the influence of centrifugal force and temperature on the maximum wear depth of the tooth surface is studied based on the fretting wear model proposed by McColl.Results show that:(1)The external diameter has an opening phenomenon on the contact surface of the face gear under the centrifugal effect,which reduces the load-bearing area;(2)The contact stress at the inner root of the face gear is the largest and the wear is the most serious;(3)The temperature field causes the contact surface to be thermally expanded,resulting in the large uneven deformation,and the tooth surface appears drum-shape;(4)The maximum contact stress and the maximum wear depth occur in the middle of the tooth root;(5)As the temperature increases,the maximum wear depth of the tooth surface increases significantly.Consequently,reducing temperature of the combined rotor plays an important role in effectively reducing the wear of the face gear and improving the connection life of face gear connection structure.
文摘Fretting oxidization is a main form of fretting chemical damage. In this paper, a theory analysis was proceeded for several key factors affecting this damage and one kind of fretting map based on the co-effect of those key factors were presented. By the map, not only the mode of fretting oxide can be learned better, but also it is possible to reduce fretting damage through changing working and material parameters reasonably.
基金supported by the National Natural Science Foundation of China (Nos. 50771070 and 50671085)the National High Technical Research and Development program of China (No. 2007AA03Z521)
文摘An extensive study of the composition distribution, bonding strength, hardness, and wear resistance of a 0Cr18Ni9 film deposited on a Ti811 titanium alloy surface by ion beam enhanced deposition (IBED) is presented. Shot peening was introduced to post-treat the modified surface to synergistically improve the fretting fatigue resistance of the Ti811 alloy at 350°C. The results indicate that the 0Cr18Ni9 film with high density, small grain size, low void radio, and high bonding strength can be prepared using IBED. As a result, the hardness, wear resistance, and fretting fatigue resistance of the Ti811 alloy are increased to a remarkable extent. Compared with shot peening treatment or IBED 0Cr18Ni9 film alone, the Ti811 titanium alloy with an IBED 0Cr18Ni9 film combined with shot peening shows a higher fretting fatigue resistance at 350°C. This is due to the synergistic effect of the high wear resistance of the film surface and the residual compressive stress induced by shot peening.
基金Supported by National Natural Science Foundation of China(Grant Nos.51375407,U1530136,51627806)Shanghai Municipal Science and Technology Talent Program of China(Grant No.14R21421500)Young Scientific Innovation Team of Science and Technology of Sichuan(Grant No.2017TD0017)
文摘The impact fretting wear has largely occurred at nuclear power device induced by the flow-induced vibra- tion, and it will take potential hazards to the service of the equipment. However, the present study focuses on the tangential fretting wear of alloy 690 tubes. Research on impact fretting wear of alloy 690 tubes is limited and the related research is imminent. Therefore, impact fretting wear behavior of alloy 690 tubes against 304 stainless steels is investigated. Deionized water is used to simulate the flow environment of the equipment, and the dry envi- ronment is used for comparison. Varied analytical tech- niques are employed to characterize the wear and tribochemical behavior during impact fretting wear. Char- acterization results indicate that cracks occur at high impact load in both water and dry equipment; however, the water as a medium can significantly delay the cracking time. The crack propagation behavior shows a jagged shape in the water, but crack extended disorderly in dry equip- ment because the water changed the stress distribution and retarded the friction heat during the wear process. The SEM and XPS analysis shows that the main failure mechanisms of the tube under impact fretting are fatiguewear and friction oxidation. The effect of medium(water) on fretting wear is revealed, which plays a potential and promising role in the service of nuclear power device and other flow equipments.
基金Project(50521503)supported by the National Natural Science Foundation of ChinaProject(2007CB714704)supported by the National Basic Research Program of ChinaProject(200536)supported by the Foundation of the Author of National Excellent Doctoral Dissertation of China
文摘Micro-arc oxidation(MAO)coating was prepared on Ti6Al4V alloy surface and its characterizations were detected by Vickers hardness tester,profilometer,scanning electric microscope(SEM),energy dispersive X-ray spectrometer(EDX)and X-ray diffractometer(XRD).Fretting wear behaviors of the coating and its substrate were comparatively tested without lubrication under varied displacement amplitudes(D)in a range of 3-40μm,constant normal load(Fn)of 300 N and frequency of 5 Hz.The results showed that the MAO coating,presenting rough and porous surface and high hardness,mainly consisted of rutile and anatase TiO2 phases.Compared with the substrate,the MAO coating could shift the mixed fretting regime(MFR)and slip regime(SR)to a direction of smaller displacement amplitude.In the partial slip regime(PSR),lower friction coefficients and slight damage appeared due to the coordination of elastic deformation of contact zones.In the MFR,the friction coefficient of the coating was lower than that of the substrate as a result of the prevention of plastic deformation by the hard ceramic surface.With the increase of the displacement amplitude,the degradation of the MAO coating and the substrate increased extremely.The fretting wear mechanisms of the coating were abrasive wear and delamination with some material transfer of specimen.In addition,the coating presented a better property for alleviating fretting wear.
文摘The effects of amplitudes, normal loads and laser beam quenching on the fretting wear of titanium alloy (TC11) were experimentally investigated on SRV fretting wear test machine in air, at room temperature and without lubrication conditions. The purpose of this study is to learn the rules of fretting wear in a disk blades dovetail joint of an aircraft turbine so the test parameters are determined based on the relative movement and load in the joint. The wear depths are measured by a profilometer, the worn areas are observed and measured by an optical microscopy, and the microtopography of the worn scar is studied by scanning electron microscopy (SEM) .The tests and observations state clearly that fretting wear rate (FWR) is heavily influenced by sliding amplitude(SA) and load. In this experiment, if SA is greater than 60 μm at Hertz contact stress 105 MPa, the FWR is much higher, and the SEM makes it known that the wear mechanism is the combination of adhesive and contact fatigue in the above test conditions. In contrast, if SA smaller, the FWR lower too, and the SEM suggests that the major wear mechanism is contact fatigue. The experiments also reveal that the laser beam quenching greatly improve the fretting wear resistance of titanium alloy, especially at heavy load and large amplitude.
基金Supported by National Key Research and Development Project(Grant No.2018YFC1902400)Natural Science Foundation of Shanghai(Grant No.20ZR1415300).
文摘At present,there are many studies on the residual stress field and plastic strain field introduced by surface strengthening,which can well hinder the initiation of early fatigue cracks and delay the propagation of fatigue cracks.However,there are few studies on the effects of these key factors on fretting wear.In the paper,shot-peening(SP)and ultrasonic surface rolling process(USRP)were performed on Ti-6Al-4V plate specimens.The surface hardness and residual stresses of the material were tested by vickers indenter and X-ray diffraction residual stress analyzer.Microhardness were measured by HXD-1000MC/CD micro Vickers hardness tester.The effects of different surface strengthening on its fretting fatigue properties were verified by fretting fatigue experiments.The fretting fatigue fracture surface and wear morphology of the specimens were studied and analyzed by means of microscopic observation,and the mechanism of improving fretting fatigue life by surface strengthening process was further explained.After USRP treatment,the surface roughness of Ti-6Al-4V is significantly improved.In addition,the microhardness of the specimen after SP reaches the maximum at 80μm from the surface,which is about 123%higher than that of the AsR specimen.After USRP,it reaches the maximum at 150μm from the surface,which is about 128%higher than that of AsR specimen.It is also found that the residual compressive stress of the specimens treated by USRP and SP increases first and then decreases with the depth direction,and the residual stress reaches the maximum on the sub surface.The USRP specimen reaches the maximum value at 0.18 mm,about−550 MPa,while the SP specimen reaches the maximum value at 0.1 mm,about−380 MPa.The fretting fatigue life of Ti-6Al-4V effectively improved after USRP and SP.The surface integrity of specimens after USRP is the best,which has deeper residual compressive stress layer and more refined grain.In this paper,a fretting wear device is designed to carry out fretting fatigue experiments on specimens with different surface strengthening.
文摘The tribology behaviors of Ti6Al7Nb,its alloy with N-ion implantation,and its alloy with diamond-like carbon(DLC)coating were investigated in artificial saliva.Fretting wear tests of untreated,N-ion implanted and DLC coated Ti6Al7Nb alloys plate against a Si3N4ball were carried out on a reciprocating sliding fretting wear test rig.Based on the analysis of X-ray diffraction,Raman spectroscopy,3-D profiler,SEM morphologies and frictional kinetics behavior analysis,the damage behavior of surface modification layer was discussed in detail.The results indicated that the fretting wear behavior of Ti6Al7Nb alloy with N-ion implantation was increased with the dose increase of the implanted nitrogen ions.Moreover,the DLC-coated Ti6Al7Nb alloy with low ion implantation could improve the fretting wear behavior greatly.In addition,the Ti6Al7Nb with DLC coating had better ncorrosion resistance due to the special compact structure.All results suggested that the Ti6Al7Nb with DLC coating had better wear resistance than that with N-ion implantation in artificial saliva.
基金supported by the National Natural Science Foundation of China(No.11002010)
文摘A new continuum damage mechanics model for fretting fatigue life prediction is established. In this model, the damage evolution rate is described by two kinds of quantities. One is associated with the cyclic stress characteristics obtained by the finite element (FE) analysis, and the other is associated with the material fatigue property identified from the fatigue test data of standard specimens. The wear is modeled by the energy wear law to simulate the contact geometry evolution. A two-dimensional (2D) plane strain FE implementation of the damage mechanics model and the energy wear model is presented in the platform of ABAQUS to simulate the evolutions of the fatigue damage and the wear scar. The effect of the specimen thickness is also investigated. The predicted results of the crack initiation site and the fretting fatigue life agree well with available experimental data. Comparisons are made with the critical plane Smith- Watson-Topper (SWT) method.