2A14-T62 butt joint was successfully welded by stationary shoulder friction stir welding(SSFSW)method.The results showed that using a pin with small shoulder could broaden the process window,and under a rotation speed...2A14-T62 butt joint was successfully welded by stationary shoulder friction stir welding(SSFSW)method.The results showed that using a pin with small shoulder could broaden the process window,and under a rotation speed of 2000 r/min and welding speed of 30 mm/min,joint with smooth surface,small reduction in thickness and little inner defects was obtained.The weld nugget zone was approx-imately circular,which was a unique morphology for SSFSW.The heat-affected zone(HAZ)and thermo-mechanically affected zone(TMAZ)were both quite narrow due to the lower heat input and slight mechanical action of the stationary shoulder.The fraction of high angle grain boundaries(HAGBs)exhibited a“W”shape along horizontal direction(from advancing side to retreating side),and the minim-um value located at HAZ.The average ultimate tensile strength and elongation of the joint were 325 MPa and 4.5%,respectively,with the joint efficiency of 68.3%.The joint was ductile fractured and the fracture surface contained two types of dimples morphology in different re-gions of the joint.Microhardness distribution in the joint exhibited a“W”shape,and the difference along the thickness direction was negli-gible.The joint had strong stress corrosion cracking susceptibility,and the slow stain rate tensile strength was 139 MPa.Microcrack and Al2O3 particulates were observed at the fracture surface.展开更多
The reliable welding of T91 heat-resistant steel to 316L stainless steel is a considerable issue for ensuring the safety in service of ultrasupercritical power generation unit and nuclear fusion reactor,but the high-q...The reliable welding of T91 heat-resistant steel to 316L stainless steel is a considerable issue for ensuring the safety in service of ultrasupercritical power generation unit and nuclear fusion reactor,but the high-quality dissimilar joint of these two steels was difficult to be obtained by traditional fusion welding methods.Here we improved the structure-property synergy in a dissimilar joint of T91 steel to 316L steel via friction stir welding.A defect-free joint with a large bonding interface was produced using a small-sized tool under a relatively high welding speed.The bonding interface was involved in a mixing zone with both mechanical mixing and metallurgical bonding.No obvious material softening was detected in the joint except a negligible hardness decline of only HV~10 in the heat-affected zone of the T91 steel side due to the formation of ferrite phase.The welded joint exhibited an excellent ultimate tensile strength as high as that of the 316L parent metal and a greatly enhanced yield strength on account of the dependable bonding and material renovation in the weld zone.This work recommends a promising technique for producing high-strength weldments of dissimilar nuclear steels.展开更多
A new structure of 1+2 was designed in friction stir welding(FSW)of Al alloy sheet with unequal thickness:a specific sheet with similar composition of base metals(BMs)was placed under the thinner sheet as the supporti...A new structure of 1+2 was designed in friction stir welding(FSW)of Al alloy sheet with unequal thickness:a specific sheet with similar composition of base metals(BMs)was placed under the thinner sheet as the supporting sheet so that the BM surfaces could be on a plane.The BMs can also be fully penetrated weld with a stirring pin longer than the thickness of the thin sheet.2 mm and 1.5 mm thick Al alloy sheets were welded by FSW,and parameters were optimized.The highest welding strength reached 96.07%of the thin base metal.Although a slight thinning phenomenon occurred at the edge of the nugget on the retreating side,the specimen still fractured in the heat-af-fected zone.展开更多
Fusion welding easily causes microstructural coarsening in the heat-affected zone(HAZ) of a thick-gauge pipeline steel joint. This is most significant in the inter-critically coarse-grained HAZ(ICCGHAZ), which conside...Fusion welding easily causes microstructural coarsening in the heat-affected zone(HAZ) of a thick-gauge pipeline steel joint. This is most significant in the inter-critically coarse-grained HAZ(ICCGHAZ), which considerably deteriorates the toughness of the joint. In the present work, 11-mm thick pipeline steel was joined by preheating and double-sided friction stir welding(FSW). A comparative study on the microstructure and toughness in the ICCGHAZs for FSW and gas metal arc welding(GMAW) was performed. The toughness in the ICCGHAZ for FSW was improved significantly than that in the ICCGHAZ for GMAW. Generally, the nugget zone(NZ) has a coarse microstructure in the FSW steel joint formed at the highest peak temperature. However, in the current study, the microstructure in the one-pass NZ was remarkably refined owing to the static recrystallization of ferrite. An excellent toughness was achieved in the NZ of the pipeline steel joint that employed FSW.展开更多
Magnesium and aluminum alloys continually attract interest as lightweight structural materials for transport applications. However, joining these dissimilar alloys is very challenging. The main obstacle that hinders p...Magnesium and aluminum alloys continually attract interest as lightweight structural materials for transport applications. However, joining these dissimilar alloys is very challenging. The main obstacle that hinders progress in dissimilar Mg-Al joining is the formation of brittle intermetallic compounds(IMCs). As a solid-state joining technique, FSW is an excellent candidate to attenuate the deleterious IMC effects in dissimilar Al-Mg joining due to the inherent low heat inputs involved in the process. However, the IMCs, namely Al_(3)Mg_(2) and Al_(12)Mg_(17) phases, have also been reported to form during Al-Mg dissimilar FSW;their amount and thickness depend on the heat input involved;thus,the weld parameters used. Since the heat dissipated in the material during the welding process significantly affects the amount of IMCs,the heat input during FSW should be kept as low as possible to control and reduce the amount of IMCs. This review aims to critically discuss and evaluate the studies conducted in the dissimilar Al/Mg FSW through a scientometric analysis and also with a focus on the strategies recently applied to enhance joint quality. The scientometric analysis showed that the main research directions in Mg/Al FSW are the technological weldability of aluminum and magnesium during FSW, structural morphology, and mechanical properties of dissimilar welded joints. Considering the scope of application of the aforementioned joints, the low share of articles dealing with environmental degradation and operational cracking is surprising. This might be attributed to the need for well-developed strategies for obtaining high-quality and sustainable joints for applications. Thus, the second part of this review is conventional, focusing mainly on the new strategies for obtaining high-quality Mg/Al joints. It can be concluded that in addition to the necessity to optimum welding parameters to suppress the excessive heat to limit the amount and thickness of IMC formed and improve the overall joint quality, strategies such as using Zn interlayer, electric current assisted FSW(EAFSW), ultrasonic vibration FSW(UVa FSW), are considered effective in the elimination, reduction, and fragmentation of the brittle IMCs.展开更多
Galvanic corrosion of AZ31B joined with bare or Zn-coated DP590 steel by ultrasonic spot welding or linear friction stir welding was quantitatively studied by pre-defining anode and cathode in the lap joint samples. C...Galvanic corrosion of AZ31B joined with bare or Zn-coated DP590 steel by ultrasonic spot welding or linear friction stir welding was quantitatively studied by pre-defining anode and cathode in the lap joint samples. Corrosion volume and depth from Mg anode surfaces exposed to 0.1 M sodium chloride solution was analyzed as functions of cathode surface type and welding method. Characterization of as-welded joints was performed to identify any microstructural feature of the bonding zone that could impact galvanic corrosion behavior.COMSOL modeling with modified user subroutine was conducted to simulate the progression of Mg corrosion in the same joint and electrode configurations used for the corrosion experiments. The experimental results indicated that Zn-coated cathode surface can reduce Mg galvanic corrosion significantly as galvanic polarization and cathodic current on Zn-coated surface remained relatively low for Mg in the weld joints.COMSOL modeling described the growth of Mg galvanic corrosion in a reasonable manner but showed limitation by underestimating the corrosion volume as it did not capture self-corrosion.展开更多
Thin copper sheets as marker material were embedded into weld path of 2024 aluminium alloy plates and their final position after friction stir welding was examined by metallographic techniques. Referring to the visual...Thin copper sheets as marker material were embedded into weld path of 2024 aluminium alloy plates and their final position after friction stir welding was examined by metallographic techniques. Referring to the visualized material flow patterns, a three-dimensional model was developed to conduct the numerical simulation of the temperature profile and plastic material flow in friction stir welding. The calculated velocity contour of plastic flow in close proximity of the tool is generally consistent with the visualized results. As the tool rotation speed increases at a constant tool travel speed, the material flow near the pin gets stronger. The predicted shape and size of the weld nugget zone match with the experimentally measured ones.展开更多
Dissimilar friction stir welding between 1060 aluminum alloy and annealed pure copper sheet with a thickness of 3 mm was investigated. Sound weld was obtained at a rotational speed of 1050 r/min and a welding speed of...Dissimilar friction stir welding between 1060 aluminum alloy and annealed pure copper sheet with a thickness of 3 mm was investigated. Sound weld was obtained at a rotational speed of 1050 r/min and a welding speed of 30 mm/min. Intercalation structure formed at the crown and Cu/weld nugget (WN) area promotes interracial diffusion and metallurgical bonding of aluminum and copper. However, corrosion morphology reveals the weak bonding mechanism of internal interface, which causes the joint failing across the interface with a brittle-ductile mixed fracture mode. The tensile strength of the joint is 148 MPa, which is higher than that of the aluminum matrix. Crystal defects and grain refinement by severely plastic deformation during friction stir welding facilitate short circuit diffusion and thus accelerate the formation of A14Cu9 and A12Cu intermetallic compounds (IMCs). XRD results show that A14Cu9 is mainly in Cu/WN transition zone. The high dislocation density and formation of dislocation loops are the major reasons of hardness increase in the WN.展开更多
The dissimilar friction stir welding of pure copper/1350 aluminum alloy sheet with a thickness of 3 mm was investigated. Most of the rotating pin was inserted into the aluminum alloy side through a pin-off technique, ...The dissimilar friction stir welding of pure copper/1350 aluminum alloy sheet with a thickness of 3 mm was investigated. Most of the rotating pin was inserted into the aluminum alloy side through a pin-off technique, and sound welds were obtained at a rotation speed of 1000 r/min and a welding speed of 80 mm/min. Complicated microstructure was formed in the nugget, in which vortex-like pattern and lamella structure could be found. No intermetallic compounds were found in the nugget. The hardness distribution indicates that the hardness at the copper side of the nugget is higher than that at the aluminum alloy side, and the hardness at the bottom of the nugget is generally higher than that in other regions. The ultimate tensile strength and elongation of the dissimilar welds are 152 MPa and 6.3%, respectively. The fracture surface observation shows that the dissimilar joints fail with a ductile-brittle mixed fracture mode durin~ tensile test.展开更多
Lap joints of TC1 Ti alloy and LF6 A1 alloy dissimilar materials were fabricated by friction stir welding and corresponding interface characteristics were investigated. Using the selected welding parameters, excellent...Lap joints of TC1 Ti alloy and LF6 A1 alloy dissimilar materials were fabricated by friction stir welding and corresponding interface characteristics were investigated. Using the selected welding parameters, excellent surface appearance forms, but the interface macrograph for each lap joint cross-section is different. With the increase of welding speed or the decrease of tool rotation rate, the amount of Ti alloy particles stirred into the stir zone by the force of tool pin decreases continuously. Moreover, the failure loads of the lap joints also decrease with increasing welding speed and the largest value is achieved at welding speed of 60 mm/min and tool rotation rate of 1500 r/min, where the interracial zone can be divided into 3 kinds of layers. The microhardness of the lap joint shows an uneven distribution and the maximum hardness of HV 502 is found in the middle of the stir zone.展开更多
The thermal modeling of underwater friction stir welding (FSW) was conddcted with a three-dimensional heat transfer model. The vaporizing characteristics of water were analyzed to illuminate the boundary conditions ...The thermal modeling of underwater friction stir welding (FSW) was conddcted with a three-dimensional heat transfer model. The vaporizing characteristics of water were analyzed to illuminate the boundary conditions of underwater FSW. Temperature dependent properties of the material were considered for the modeling. FSW experiments were carried out to validate the calculated results, and the calculated results showed good agreement with the experimental results. The results indicate that the maximum peak temperature of underwater joint is significantly lower than that of normal joint, although the surface heat flux of shoulder during the underwater FSW is higher than that during normal FSW. For underwater joint, the high-temperature distributing area is dramatically narrowed and the welding thermal cycles in different zones are effectively controlled in contrast to the normal joint.展开更多
Coupled thermo-mechanical model was used to investigate the effects of the pin diameter, the shoulder diameter and the in conical angle on the heat generations, the material deformations and the energy histories in fr...Coupled thermo-mechanical model was used to investigate the effects of the pin diameter, the shoulder diameter and the in conical angle on the heat generations, the material deformations and the energy histories in friction stir welding(FSW) of AA2024-T3 alloy. Results indicate that the shoulder-plate contact area takes more important contribution to the heat generation than the pin-plate contact area. The increase of the shoulder diameter or the decrease of the pin diameter can lead to the increase of the welding temperature in FSW, but the change of shoulder size is more important. Compared to the cases in FSW of AA6061-T6, the input power is obviously increased in FSW of AA2024-T3 and the ratio of the plastic dissipation to the friction dissipation becomes decreased.展开更多
Friction stir welding(FSW) is a solid-state welding process which is capable of joining materials which are relatively difficult to be welded by fusion welding process. Further, this process is highly energy-efficie...Friction stir welding(FSW) is a solid-state welding process which is capable of joining materials which are relatively difficult to be welded by fusion welding process. Further, this process is highly energy-efficient and environmental-friendly as compared to the fusion welding. Despite several advantages of FSW over fusion welding, the thermal cycles involved in FSW cause softening in joints generally in heat-treatable aluminum alloys(AAs) due to the dissolution or coarsening of the strengthening precipitates leading to decrease in mechanical properties. Underwater friction stir welding(UFSW) can be a process of choice to overcome these limitations. This process is suitable for alloys that are sensitive to heating during the welding and is widely used for heat-treatable AAs. The purpose of this article is to provide comprehensive literature review on current status and development of UFSW and its importance in comparison to FSW with an aim to discuss and summarize different aspects of UFSW. Specific attention is given to basic principle including material flow, temperature generation, process parameters, microstructure and mechanical properties. From the review, it is concluded that UFSW is an improved method compared with FSW for improving joint strength. Academicians, researchers and practitioners would be benefitted from this article as it compiles significantly important knowledge pertaining to UFSW.展开更多
Friction stir welding(FSW) is a promising welding process that can join age hardenable aluminium alloys with high joint efficiency. However,the thermal cycles experienced by the material to be joined during FSW result...Friction stir welding(FSW) is a promising welding process that can join age hardenable aluminium alloys with high joint efficiency. However,the thermal cycles experienced by the material to be joined during FSW resulted in the deterioration of mechanical properties due to the coarsening and dissolution of strengthening precipitates in the thermo-mechanical affected zone(TMAZ) and heat affected zone(HAZ). Under water friction stir welding(UWFSW) is a variant of FSW process which can maintain low heat input as well as constant heat input along the weld line. The heat conduction and dissipation during UWFSW controls the width of TMAZ and HAZ and also improves the joint properties. In this investigation, an attempt has been made to evaluate the mechanical properties and microstructural characteristics of AA2519-T87 aluminium alloy joints made by FSW and UWFSW processes. Finite element analysis has been used to estimate the temperature distribution and width of TMAZ region in both the joints and the results have been compared with experimental results and subsequently correlated with mechanical properties.? 2016 China Ordnance Society. Production and hosting by Elsevier B.V. All rights reserved.展开更多
Ultrasonic assisted friction stir welding (UAFSW) is a recent modification of conventional friction stir welding, which adds ultrasonic energy directly into the friction stir welding area by the pin. In this study, ...Ultrasonic assisted friction stir welding (UAFSW) is a recent modification of conventional friction stir welding, which adds ultrasonic energy directly into the friction stir welding area by the pin. In this study, 2A12 aluminum alloy was welded by this process and conventional, respectively. The tensile tests, microstructure and fracture surface of FSW joint and UAFSW joint were analyzed. The research results show that the surface forming texture of ultrasonic assisted friction stir welding joint, compared with conventional, is finer and more uniform, showing metallic matte color. The grains are much finer in weld nugget zone, thermo-mechanically affected zone and heat-affected zone; S-phase particles size is much smaller and distribution is more homogeneous in the matrix. The tensile strength of UAFSW joint is 94. 13% of base metal, and the elongation is 11.77%. The tensile strength of FSW joint is 83.15% of base metal, and the elongation is 8.81%. The tests results reveal that ultrasonic vibration can improve the tensile strength and the elongation of welded joints.展开更多
The purpose of this study is to reveal the microstructure and mechanical properties of friction stir welding(FSW)joints prepared in water/air.For comparable analysis,the submerged FSW(SFSW)and conventional FSW are bot...The purpose of this study is to reveal the microstructure and mechanical properties of friction stir welding(FSW)joints prepared in water/air.For comparable analysis,the submerged FSW(SFSW)and conventional FSW are both conducted on 6061-T6 aluminum alloy plates at the combination rotation speed of 800 r/min and the traverse rate of 50 mm/min.The results show that a greatest grain refinement is achieved by SFSW,which is remarkably smaller than that of the base material(BM)and air FSW(AFSW)samples,leading to a significant improvement of tensile strength from 202.5 MPa in the AFSW sample to 232 MPa in the SFSW sample.展开更多
Material flow and phase transformation were studied at the interface of dissimilar joint between Al 6013 and Mg, produced by stir friction welding (FSW) experiments. Defect-free weld was obtained when aluminum and m...Material flow and phase transformation were studied at the interface of dissimilar joint between Al 6013 and Mg, produced by stir friction welding (FSW) experiments. Defect-free weld was obtained when aluminum and magnesium were placed in the advancing side and retreating side respectively and the tool was placed 1 mm off the weld centerline into the aluminum side. In order to understand the material flow during FSW, steel shots were implanted as indexes into the welding path. After welding, using X-ray images, secondary positions of the steel shots were evaluated. It was revealed that steel shots implanted in advancing side were penetrated from the advancing side into the retreating side, whereas the shots implanted in the retreating side remained in the retreating side, without penetrating into the advancing side. The welded specimens were also heat treated. The effects of heat treatment on the mechanical properties of the welds and the formation of new intermetallic layers were investigated. Two intermetallic compounds, Al3Mg2 and Al12Mg17, were formed sequentially at Al6013/Mg interface.展开更多
Components made by joining different materials are required in various engineering applications.Fabrication of suchcomponents is a challenging task due to the vast difference in mechanical,thermal and electrical prope...Components made by joining different materials are required in various engineering applications.Fabrication of suchcomponents is a challenging task due to the vast difference in mechanical,thermal and electrical properties of the materials beingused.Friction stir welding(FSW)is capable of joining dissimilar materials such as aluminum(Al)and copper(Cu)and thereforeresearchers have used this novel process for dissimilar joining.Consequently,several works pertaining to dissimilar joining,specifically Al?Cu,are available in the literature but they are scattered in different sources,which makes the task of gatheringinformation about dissimilar FSW of Al?Cu cumbersome.This work has been written with an aim to provide all pertinentinformation related to dissimilar FSW of Al?Cu at one place to ease the problems of researchers.It comprehensively covers andsummarizes the topics such as the effect of tool design and geometry,FSW process parameters,FSW strategies on mechanicalproperties,microstructure and formation of defects during dissimilar FSW of Al?Cu.In addition,it also presents and discussesseveral variants of dissimilar FSW of Al?Cu.Finally,this work not only puts forth major findings of the previous researchers but alsosuggests future recommendations for dissimilar FSW of Al?Cu.展开更多
Friction stir welding between AA5052-H32aluminium plates is performed by central composite design technique of response surface methodology.It is found that the welding parameters such as tool pin profile,tool rotatio...Friction stir welding between AA5052-H32aluminium plates is performed by central composite design technique of response surface methodology.It is found that the welding parameters such as tool pin profile,tool rotational speed,welding speed,and tool tilt angle play a major role in deciding the joint characteristics.The joints fabricated using tapered square pin profile tool with a tool rotational speed of600r/min,welding speed of65mm/min,and tool tilt angle of1.5°result in an unexpected weld efficiency of93.51%.Mathematical models are developed to map the correlation between the parameters and responses(ultimate tensile strength and elongation)and these models are optimized to maximize the ultimate tensile strength of the friction stir welded joint.Response plots generated from the mathematical models are used to interpret the interaction effects of the welding parameters on the response variables.Adequacy of the developed models is validated using analysis of variance(ANOVA)technique.Results from the confirmatory experiments plotted in scatter diagram show a good agreement with predicted models.Different grain structures in various zones of the weld are examined by observing the micro and macro structures of the weld.展开更多
Butt friction stir welding between pure copper and AA5754 alloy was carried out.Reinforcing SiC nanoparticles were utilized in friction stir welded(FSW)joints to decline the harmful effects of intermetallic compounds....Butt friction stir welding between pure copper and AA5754 alloy was carried out.Reinforcing SiC nanoparticles were utilized in friction stir welded(FSW)joints to decline the harmful effects of intermetallic compounds.Tensile tests,micro-hardness experiments,scanning electron microscopy and X-ray diffraction analysis were applied to studying the properties of welded joints.The joints with a travel speed of 50 mm/min and a rotation speed of 1000 r/min showed the best results.The presence of nano-sized SiC particles reduced the grain size of aluminum and copper in the stir zone(SZ)from 38.3 and 12.4μm to 12.9 and 5.1μm,respectively.The tensile strength of the joint in the presence of reinforcing SiC nano-particles was~240 MPa,which is~90%of that for the aluminum base.Furthermore,the highest microhardness of the weld zone was significantly increased from HV 160 to HV 320 upon the addition of SiC nano-particles.The results also showed that raising the heat generation in FSW joints increased the amount of Al_(4)Cu_(9) and Al_(2)Cu intermetallic compounds.展开更多
基金supported by the Research and Development Project of“Jianbing”in Zhejiang Province(2024C01085)Natural Science and Foundation of Ningbo(2022J052).
文摘2A14-T62 butt joint was successfully welded by stationary shoulder friction stir welding(SSFSW)method.The results showed that using a pin with small shoulder could broaden the process window,and under a rotation speed of 2000 r/min and welding speed of 30 mm/min,joint with smooth surface,small reduction in thickness and little inner defects was obtained.The weld nugget zone was approx-imately circular,which was a unique morphology for SSFSW.The heat-affected zone(HAZ)and thermo-mechanically affected zone(TMAZ)were both quite narrow due to the lower heat input and slight mechanical action of the stationary shoulder.The fraction of high angle grain boundaries(HAGBs)exhibited a“W”shape along horizontal direction(from advancing side to retreating side),and the minim-um value located at HAZ.The average ultimate tensile strength and elongation of the joint were 325 MPa and 4.5%,respectively,with the joint efficiency of 68.3%.The joint was ductile fractured and the fracture surface contained two types of dimples morphology in different re-gions of the joint.Microhardness distribution in the joint exhibited a“W”shape,and the difference along the thickness direction was negli-gible.The joint had strong stress corrosion cracking susceptibility,and the slow stain rate tensile strength was 139 MPa.Microcrack and Al2O3 particulates were observed at the fracture surface.
基金financially supported by the National Natural Science Foundation of China (Nos. 52171057, 52034005, 51901225, and 12027813)the Liaoning Province Excellent Youth Foundation, China (No. 2021-YQ-01)the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. Y2021061)
文摘The reliable welding of T91 heat-resistant steel to 316L stainless steel is a considerable issue for ensuring the safety in service of ultrasupercritical power generation unit and nuclear fusion reactor,but the high-quality dissimilar joint of these two steels was difficult to be obtained by traditional fusion welding methods.Here we improved the structure-property synergy in a dissimilar joint of T91 steel to 316L steel via friction stir welding.A defect-free joint with a large bonding interface was produced using a small-sized tool under a relatively high welding speed.The bonding interface was involved in a mixing zone with both mechanical mixing and metallurgical bonding.No obvious material softening was detected in the joint except a negligible hardness decline of only HV~10 in the heat-affected zone of the T91 steel side due to the formation of ferrite phase.The welded joint exhibited an excellent ultimate tensile strength as high as that of the 316L parent metal and a greatly enhanced yield strength on account of the dependable bonding and material renovation in the weld zone.This work recommends a promising technique for producing high-strength weldments of dissimilar nuclear steels.
基金Project was supported by National Key Research and Development Program of China(2022YFB 4600900)the National Natural Science Foundation of China(Grant No.52275313)the Fundamental Research Funds for the Central Universities(Grant No.DUT21LAB133).
文摘A new structure of 1+2 was designed in friction stir welding(FSW)of Al alloy sheet with unequal thickness:a specific sheet with similar composition of base metals(BMs)was placed under the thinner sheet as the supporting sheet so that the BM surfaces could be on a plane.The BMs can also be fully penetrated weld with a stirring pin longer than the thickness of the thin sheet.2 mm and 1.5 mm thick Al alloy sheets were welded by FSW,and parameters were optimized.The highest welding strength reached 96.07%of the thin base metal.Although a slight thinning phenomenon occurred at the edge of the nugget on the retreating side,the specimen still fractured in the heat-af-fected zone.
基金financially supported by the National Nature Science Foundation of China (No. 51774085)Liaoning Province Excellent Youth Foundation (No. 2020-YQ03)the Open Research Fund from the State Key Laboratory of Rolling and Automation, Northeastern University (No. 2020RALKFKT009)。
文摘Fusion welding easily causes microstructural coarsening in the heat-affected zone(HAZ) of a thick-gauge pipeline steel joint. This is most significant in the inter-critically coarse-grained HAZ(ICCGHAZ), which considerably deteriorates the toughness of the joint. In the present work, 11-mm thick pipeline steel was joined by preheating and double-sided friction stir welding(FSW). A comparative study on the microstructure and toughness in the ICCGHAZs for FSW and gas metal arc welding(GMAW) was performed. The toughness in the ICCGHAZ for FSW was improved significantly than that in the ICCGHAZ for GMAW. Generally, the nugget zone(NZ) has a coarse microstructure in the FSW steel joint formed at the highest peak temperature. However, in the current study, the microstructure in the one-pass NZ was remarkably refined owing to the static recrystallization of ferrite. An excellent toughness was achieved in the NZ of the pipeline steel joint that employed FSW.
基金sponsored by the Prince Sattam bin Abdulaziz University via project number 2023/RV/018。
文摘Magnesium and aluminum alloys continually attract interest as lightweight structural materials for transport applications. However, joining these dissimilar alloys is very challenging. The main obstacle that hinders progress in dissimilar Mg-Al joining is the formation of brittle intermetallic compounds(IMCs). As a solid-state joining technique, FSW is an excellent candidate to attenuate the deleterious IMC effects in dissimilar Al-Mg joining due to the inherent low heat inputs involved in the process. However, the IMCs, namely Al_(3)Mg_(2) and Al_(12)Mg_(17) phases, have also been reported to form during Al-Mg dissimilar FSW;their amount and thickness depend on the heat input involved;thus,the weld parameters used. Since the heat dissipated in the material during the welding process significantly affects the amount of IMCs,the heat input during FSW should be kept as low as possible to control and reduce the amount of IMCs. This review aims to critically discuss and evaluate the studies conducted in the dissimilar Al/Mg FSW through a scientometric analysis and also with a focus on the strategies recently applied to enhance joint quality. The scientometric analysis showed that the main research directions in Mg/Al FSW are the technological weldability of aluminum and magnesium during FSW, structural morphology, and mechanical properties of dissimilar welded joints. Considering the scope of application of the aforementioned joints, the low share of articles dealing with environmental degradation and operational cracking is surprising. This might be attributed to the need for well-developed strategies for obtaining high-quality and sustainable joints for applications. Thus, the second part of this review is conventional, focusing mainly on the new strategies for obtaining high-quality Mg/Al joints. It can be concluded that in addition to the necessity to optimum welding parameters to suppress the excessive heat to limit the amount and thickness of IMC formed and improve the overall joint quality, strategies such as using Zn interlayer, electric current assisted FSW(EAFSW), ultrasonic vibration FSW(UVa FSW), are considered effective in the elimination, reduction, and fragmentation of the brittle IMCs.
基金funded by the U.S. Department Energy’s Vehicle Technology Offices as a part of the Joining Core Program。
文摘Galvanic corrosion of AZ31B joined with bare or Zn-coated DP590 steel by ultrasonic spot welding or linear friction stir welding was quantitatively studied by pre-defining anode and cathode in the lap joint samples. Corrosion volume and depth from Mg anode surfaces exposed to 0.1 M sodium chloride solution was analyzed as functions of cathode surface type and welding method. Characterization of as-welded joints was performed to identify any microstructural feature of the bonding zone that could impact galvanic corrosion behavior.COMSOL modeling with modified user subroutine was conducted to simulate the progression of Mg corrosion in the same joint and electrode configurations used for the corrosion experiments. The experimental results indicated that Zn-coated cathode surface can reduce Mg galvanic corrosion significantly as galvanic polarization and cathodic current on Zn-coated surface remained relatively low for Mg in the weld joints.COMSOL modeling described the growth of Mg galvanic corrosion in a reasonable manner but showed limitation by underestimating the corrosion volume as it did not capture self-corrosion.
基金Project (GZ583) supported by the Sino-German Center for Science Promotion
文摘Thin copper sheets as marker material were embedded into weld path of 2024 aluminium alloy plates and their final position after friction stir welding was examined by metallographic techniques. Referring to the visualized material flow patterns, a three-dimensional model was developed to conduct the numerical simulation of the temperature profile and plastic material flow in friction stir welding. The calculated velocity contour of plastic flow in close proximity of the tool is generally consistent with the visualized results. As the tool rotation speed increases at a constant tool travel speed, the material flow near the pin gets stronger. The predicted shape and size of the weld nugget zone match with the experimentally measured ones.
基金Project(20140204070GX) supported by the Key Science and Technology of Jilin Province,China
文摘Dissimilar friction stir welding between 1060 aluminum alloy and annealed pure copper sheet with a thickness of 3 mm was investigated. Sound weld was obtained at a rotational speed of 1050 r/min and a welding speed of 30 mm/min. Intercalation structure formed at the crown and Cu/weld nugget (WN) area promotes interracial diffusion and metallurgical bonding of aluminum and copper. However, corrosion morphology reveals the weak bonding mechanism of internal interface, which causes the joint failing across the interface with a brittle-ductile mixed fracture mode. The tensile strength of the joint is 148 MPa, which is higher than that of the aluminum matrix. Crystal defects and grain refinement by severely plastic deformation during friction stir welding facilitate short circuit diffusion and thus accelerate the formation of A14Cu9 and A12Cu intermetallic compounds (IMCs). XRD results show that A14Cu9 is mainly in Cu/WN transition zone. The high dislocation density and formation of dislocation loops are the major reasons of hardness increase in the WN.
基金Project (2009ZM0264) supported by the Fundamental Research Funds for the Central Universities,China
文摘The dissimilar friction stir welding of pure copper/1350 aluminum alloy sheet with a thickness of 3 mm was investigated. Most of the rotating pin was inserted into the aluminum alloy side through a pin-off technique, and sound welds were obtained at a rotation speed of 1000 r/min and a welding speed of 80 mm/min. Complicated microstructure was formed in the nugget, in which vortex-like pattern and lamella structure could be found. No intermetallic compounds were found in the nugget. The hardness distribution indicates that the hardness at the copper side of the nugget is higher than that at the aluminum alloy side, and the hardness at the bottom of the nugget is generally higher than that in other regions. The ultimate tensile strength and elongation of the dissimilar welds are 152 MPa and 6.3%, respectively. The fracture surface observation shows that the dissimilar joints fail with a ductile-brittle mixed fracture mode durin~ tensile test.
基金Project (2011BAB206006) supported by the Natural Science Foundation of Jiangxi Province,ChinaProject (2009ZE56011) supported by the Aviation Science Funds of ChinaProject (GJJ12411) supported by the Education Department of Jiangxi Province,China
文摘Lap joints of TC1 Ti alloy and LF6 A1 alloy dissimilar materials were fabricated by friction stir welding and corresponding interface characteristics were investigated. Using the selected welding parameters, excellent surface appearance forms, but the interface macrograph for each lap joint cross-section is different. With the increase of welding speed or the decrease of tool rotation rate, the amount of Ti alloy particles stirred into the stir zone by the force of tool pin decreases continuously. Moreover, the failure loads of the lap joints also decrease with increasing welding speed and the largest value is achieved at welding speed of 60 mm/min and tool rotation rate of 1500 r/min, where the interracial zone can be divided into 3 kinds of layers. The microhardness of the lap joint shows an uneven distribution and the maximum hardness of HV 502 is found in the middle of the stir zone.
基金Project(2010CB731704) supported by the National Basic Research Progiam of ChinaProject(51175117) supported by the National Natural Science Foundation of ChinaProject(2010ZX04007-011) supported by the National Science and Technology Major Project of China
文摘The thermal modeling of underwater friction stir welding (FSW) was conddcted with a three-dimensional heat transfer model. The vaporizing characteristics of water were analyzed to illuminate the boundary conditions of underwater FSW. Temperature dependent properties of the material were considered for the modeling. FSW experiments were carried out to validate the calculated results, and the calculated results showed good agreement with the experimental results. The results indicate that the maximum peak temperature of underwater joint is significantly lower than that of normal joint, although the surface heat flux of shoulder during the underwater FSW is higher than that during normal FSW. For underwater joint, the high-temperature distributing area is dramatically narrowed and the welding thermal cycles in different zones are effectively controlled in contrast to the normal joint.
基金Project(NCET-12-0075)supported by the Program for New Century Excellent Talents in University,ChinaProject supported by the Fundamental Research Funds for the Central Universities,China+2 种基金Projects(11172057,11232003)supported by the National Natural Science Foundation of ChinaProject(2011CB013401)supported by the National Basic Research Program of ChinaProject(2012AA050901)supported by the National High-Tech Research and Development Program of China
文摘Coupled thermo-mechanical model was used to investigate the effects of the pin diameter, the shoulder diameter and the in conical angle on the heat generations, the material deformations and the energy histories in friction stir welding(FSW) of AA2024-T3 alloy. Results indicate that the shoulder-plate contact area takes more important contribution to the heat generation than the pin-plate contact area. The increase of the shoulder diameter or the decrease of the pin diameter can lead to the increase of the welding temperature in FSW, but the change of shoulder size is more important. Compared to the cases in FSW of AA6061-T6, the input power is obviously increased in FSW of AA2024-T3 and the ratio of the plastic dissipation to the friction dissipation becomes decreased.
文摘Friction stir welding(FSW) is a solid-state welding process which is capable of joining materials which are relatively difficult to be welded by fusion welding process. Further, this process is highly energy-efficient and environmental-friendly as compared to the fusion welding. Despite several advantages of FSW over fusion welding, the thermal cycles involved in FSW cause softening in joints generally in heat-treatable aluminum alloys(AAs) due to the dissolution or coarsening of the strengthening precipitates leading to decrease in mechanical properties. Underwater friction stir welding(UFSW) can be a process of choice to overcome these limitations. This process is suitable for alloys that are sensitive to heating during the welding and is widely used for heat-treatable AAs. The purpose of this article is to provide comprehensive literature review on current status and development of UFSW and its importance in comparison to FSW with an aim to discuss and summarize different aspects of UFSW. Specific attention is given to basic principle including material flow, temperature generation, process parameters, microstructure and mechanical properties. From the review, it is concluded that UFSW is an improved method compared with FSW for improving joint strength. Academicians, researchers and practitioners would be benefitted from this article as it compiles significantly important knowledge pertaining to UFSW.
基金the financial support of the Directorate of Extramural Research & Intellectual Property Rights (ER&IPR)Defense Research Development Organization (DRDO)New Delhi through a R&D project no. DRDO-ERIPER/ERIP/ER/0903821/M/01/1404 to carry out this investigation
文摘Friction stir welding(FSW) is a promising welding process that can join age hardenable aluminium alloys with high joint efficiency. However,the thermal cycles experienced by the material to be joined during FSW resulted in the deterioration of mechanical properties due to the coarsening and dissolution of strengthening precipitates in the thermo-mechanical affected zone(TMAZ) and heat affected zone(HAZ). Under water friction stir welding(UWFSW) is a variant of FSW process which can maintain low heat input as well as constant heat input along the weld line. The heat conduction and dissipation during UWFSW controls the width of TMAZ and HAZ and also improves the joint properties. In this investigation, an attempt has been made to evaluate the mechanical properties and microstructural characteristics of AA2519-T87 aluminium alloy joints made by FSW and UWFSW processes. Finite element analysis has been used to estimate the temperature distribution and width of TMAZ region in both the joints and the results have been compared with experimental results and subsequently correlated with mechanical properties.? 2016 China Ordnance Society. Production and hosting by Elsevier B.V. All rights reserved.
文摘Ultrasonic assisted friction stir welding (UAFSW) is a recent modification of conventional friction stir welding, which adds ultrasonic energy directly into the friction stir welding area by the pin. In this study, 2A12 aluminum alloy was welded by this process and conventional, respectively. The tensile tests, microstructure and fracture surface of FSW joint and UAFSW joint were analyzed. The research results show that the surface forming texture of ultrasonic assisted friction stir welding joint, compared with conventional, is finer and more uniform, showing metallic matte color. The grains are much finer in weld nugget zone, thermo-mechanically affected zone and heat-affected zone; S-phase particles size is much smaller and distribution is more homogeneous in the matrix. The tensile strength of UAFSW joint is 94. 13% of base metal, and the elongation is 11.77%. The tensile strength of FSW joint is 83.15% of base metal, and the elongation is 8.81%. The tests results reveal that ultrasonic vibration can improve the tensile strength and the elongation of welded joints.
文摘The purpose of this study is to reveal the microstructure and mechanical properties of friction stir welding(FSW)joints prepared in water/air.For comparable analysis,the submerged FSW(SFSW)and conventional FSW are both conducted on 6061-T6 aluminum alloy plates at the combination rotation speed of 800 r/min and the traverse rate of 50 mm/min.The results show that a greatest grain refinement is achieved by SFSW,which is remarkably smaller than that of the base material(BM)and air FSW(AFSW)samples,leading to a significant improvement of tensile strength from 202.5 MPa in the AFSW sample to 232 MPa in the SFSW sample.
文摘Material flow and phase transformation were studied at the interface of dissimilar joint between Al 6013 and Mg, produced by stir friction welding (FSW) experiments. Defect-free weld was obtained when aluminum and magnesium were placed in the advancing side and retreating side respectively and the tool was placed 1 mm off the weld centerline into the aluminum side. In order to understand the material flow during FSW, steel shots were implanted as indexes into the welding path. After welding, using X-ray images, secondary positions of the steel shots were evaluated. It was revealed that steel shots implanted in advancing side were penetrated from the advancing side into the retreating side, whereas the shots implanted in the retreating side remained in the retreating side, without penetrating into the advancing side. The welded specimens were also heat treated. The effects of heat treatment on the mechanical properties of the welds and the formation of new intermetallic layers were investigated. Two intermetallic compounds, Al3Mg2 and Al12Mg17, were formed sequentially at Al6013/Mg interface.
文摘Components made by joining different materials are required in various engineering applications.Fabrication of suchcomponents is a challenging task due to the vast difference in mechanical,thermal and electrical properties of the materials beingused.Friction stir welding(FSW)is capable of joining dissimilar materials such as aluminum(Al)and copper(Cu)and thereforeresearchers have used this novel process for dissimilar joining.Consequently,several works pertaining to dissimilar joining,specifically Al?Cu,are available in the literature but they are scattered in different sources,which makes the task of gatheringinformation about dissimilar FSW of Al?Cu cumbersome.This work has been written with an aim to provide all pertinentinformation related to dissimilar FSW of Al?Cu at one place to ease the problems of researchers.It comprehensively covers andsummarizes the topics such as the effect of tool design and geometry,FSW process parameters,FSW strategies on mechanicalproperties,microstructure and formation of defects during dissimilar FSW of Al?Cu.In addition,it also presents and discussesseveral variants of dissimilar FSW of Al?Cu.Finally,this work not only puts forth major findings of the previous researchers but alsosuggests future recommendations for dissimilar FSW of Al?Cu.
文摘Friction stir welding between AA5052-H32aluminium plates is performed by central composite design technique of response surface methodology.It is found that the welding parameters such as tool pin profile,tool rotational speed,welding speed,and tool tilt angle play a major role in deciding the joint characteristics.The joints fabricated using tapered square pin profile tool with a tool rotational speed of600r/min,welding speed of65mm/min,and tool tilt angle of1.5°result in an unexpected weld efficiency of93.51%.Mathematical models are developed to map the correlation between the parameters and responses(ultimate tensile strength and elongation)and these models are optimized to maximize the ultimate tensile strength of the friction stir welded joint.Response plots generated from the mathematical models are used to interpret the interaction effects of the welding parameters on the response variables.Adequacy of the developed models is validated using analysis of variance(ANOVA)technique.Results from the confirmatory experiments plotted in scatter diagram show a good agreement with predicted models.Different grain structures in various zones of the weld are examined by observing the micro and macro structures of the weld.
文摘Butt friction stir welding between pure copper and AA5754 alloy was carried out.Reinforcing SiC nanoparticles were utilized in friction stir welded(FSW)joints to decline the harmful effects of intermetallic compounds.Tensile tests,micro-hardness experiments,scanning electron microscopy and X-ray diffraction analysis were applied to studying the properties of welded joints.The joints with a travel speed of 50 mm/min and a rotation speed of 1000 r/min showed the best results.The presence of nano-sized SiC particles reduced the grain size of aluminum and copper in the stir zone(SZ)from 38.3 and 12.4μm to 12.9 and 5.1μm,respectively.The tensile strength of the joint in the presence of reinforcing SiC nano-particles was~240 MPa,which is~90%of that for the aluminum base.Furthermore,the highest microhardness of the weld zone was significantly increased from HV 160 to HV 320 upon the addition of SiC nano-particles.The results also showed that raising the heat generation in FSW joints increased the amount of Al_(4)Cu_(9) and Al_(2)Cu intermetallic compounds.