期刊文献+
共找到573,838篇文章
< 1 2 250 >
每页显示 20 50 100
Partial function prediction of sulfate-reducing bacterial community from the rhizospheres of two typical coastal wetland plants in China
1
作者 Xiaoyue SONG Jiangning ZENG +7 位作者 Yi ZHOU Quanzhen CHEN Hongsheng YANG Lu SHOU Yibo LIAO Wei HUANG Ping DU Qiang LIU 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2021年第1期185-197,共13页
Sulfate-reducing bacteria(SRB)are ubiquitous anaerobic microorganisms that play signifi cant roles in the global biogeochemical cycle.Coastal wetlands,one of the major habitats of SRB,exhibit high sulfate-reducing act... Sulfate-reducing bacteria(SRB)are ubiquitous anaerobic microorganisms that play signifi cant roles in the global biogeochemical cycle.Coastal wetlands,one of the major habitats of SRB,exhibit high sulfate-reducing activity and thus play signifi cant roles in organic carbon remineralization,benthic geochemical action,and plant-microbe interactions.Recent studies have provided credible evidence that the functional rather than the taxonomic composition of microbes responds more closely to environmental factors.Therefore,in this study,functional gene prediction based on PacBio single molecular real-time sequencing of 16S rDNA was applied to determine the sulfate-reducing and organic substrate-decomposing activities of SRB in the rhizospheres of two typical coastal wetland plants in North and South China:Zostera japonica and Scirpus mariqueter.To this end,some physicochemical characteristics of the sediments as well as the phylogenetic structure,community composition,diversity,and proportions of several functional genes of the SRB in the two plant rhizospheres were analyzed.The Z.japonic a meadow had a higher dissimilatory sulfate reduction capability than the S.mariqueter-comprising saltmarsh,owing to its larger proportion of SRB in the microbial community,larger proportions of functional genes involved in dissimilatory sulfate reduction,and the stronger ability of the SRB to degrade organic substrates completely.This study confi rmed the feasibility of applying microbial community function prediction in research on the metabolic features of SRB,which will be helpful for gaining new knowledge of the biogeochemical and ecological roles of these bacteria in coastal wetlands. 展开更多
关键词 sulfate-reducing bacteria(SRB) microbial community function prediction 16S rDNA PacBio SMRT sequencing Zostera japonica Scirpus mariqueter RHIZOSPHERE
下载PDF
Development and validation of a model integrating clinical and coronary lesion-based functional assessment for longterm risk prediction in PCI patients
2
作者 Shao-Yu WU Rui ZHANG +5 位作者 Sheng YUAN Zhong-Xing CAI Chang-Dong GUAN Tong-Qiang ZOU Li-Hua XIE Ke-Fei DOU 《Journal of Geriatric Cardiology》 SCIE CAS CSCD 2024年第1期44-63,共20页
OBJECTIVES To establish a scoring system combining the ACEF score and the quantitative blood flow ratio(QFR) to improve the long-term risk prediction of patients undergoing percutaneous coronary intervention(PCI).METH... OBJECTIVES To establish a scoring system combining the ACEF score and the quantitative blood flow ratio(QFR) to improve the long-term risk prediction of patients undergoing percutaneous coronary intervention(PCI).METHODS In this population-based cohort study, a total of 46 features, including patient clinical and coronary lesion characteristics, were assessed for analysis through machine learning models. The ACEF-QFR scoring system was developed using 1263consecutive cases of CAD patients after PCI in PANDA Ⅲ trial database. The newly developed score was then validated on the other remaining 542 patients in the cohort.RESULTS In both the Random Forest Model and the Deep Surv Model, age, renal function(creatinine), cardiac function(LVEF)and post-PCI coronary physiological index(QFR) were identified and confirmed to be significant predictive factors for 2-year adverse cardiac events. The ACEF-QFR score was constructed based on the developmental dataset and computed as age(years)/EF(%) + 1(if creatinine ≥ 2.0 mg/d L) + 1(if post-PCI QFR ≤ 0.92). The performance of the ACEF-QFR scoring system was preliminarily evaluated in the developmental dataset, and then further explored in the validation dataset. The ACEF-QFR score showed superior discrimination(C-statistic = 0.651;95% CI: 0.611-0.691, P < 0.05 versus post-PCI physiological index and other commonly used risk scores) and excellent calibration(Hosmer–Lemeshow χ^(2)= 7.070;P = 0.529) for predicting 2-year patient-oriented composite endpoint(POCE). The good prognostic value of the ACEF-QFR score was further validated by multivariable Cox regression and Kaplan–Meier analysis(adjusted HR = 1.89;95% CI: 1.18–3.04;log-rank P < 0.01) after stratified the patients into high-risk group and low-risk group.CONCLUSIONS An improved scoring system combining clinical and coronary lesion-based functional variables(ACEF-QFR)was developed, and its ability for prognostic prediction in patients with PCI was further validated to be significantly better than the post-PCI physiological index and other commonly used risk scores. 展开更多
关键词 PATIENTS CORONARY prediction
下载PDF
In silico protein function prediction:the rise of machine learning-based approaches
3
作者 Jiaxiao Chen Zhonghui Gu +1 位作者 Luhua Lai Jianfeng Pei 《Medical Review》 2023年第6期487-510,共24页
Proteins function as integral actors in essential life processes,rendering the realm of protein research a fundamental domain that possesses the potential to propel advancements in pharmaceuticals and disease investig... Proteins function as integral actors in essential life processes,rendering the realm of protein research a fundamental domain that possesses the potential to propel advancements in pharmaceuticals and disease investigation.Within the context of protein research,an imperious demand arises to uncover protein functionalities and untangle intricate mechanistic underpinnings.Due to the exorbitant costs and limited throughput inherent in experimental investigations,computational models offer a promising alternative to accelerate protein function annotation.In recent years,protein pre-training models have exhibited noteworthy advancement across multiple prediction tasks.This advancement highlights a notable prospect for effectively tackling the intricate downstream task associated with protein function prediction.In this review,we elucidate the historical evolution and research paradigms of computational methods for predicting protein function.Subsequently,we summarize the progress in protein and molecule representation as well as feature extraction techniques.Furthermore,we assess the performance of machine learning-based algorithms across various objectives in protein function prediction,thereby offering a comprehensive perspective on the progress within this field. 展开更多
关键词 protein function prediction pre-training models protein interaction prediction protein function annotation biological knowledge graph
原文传递
Remaining Useful Life Prediction With Partial Sensor Malfunctions Using Deep Adversarial Networks 被引量:2
4
作者 Xiang Li Yixiao Xu +2 位作者 Naipeng Li Bin Yang Yaguo Lei 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第1期121-134,共14页
In recent years,intelligent data-driven prognostic methods have been successfully developed,and good machinery health assessment performance has been achieved through explorations of data from multiple sensors.However... In recent years,intelligent data-driven prognostic methods have been successfully developed,and good machinery health assessment performance has been achieved through explorations of data from multiple sensors.However,existing datafusion prognostic approaches generally rely on the data availability of all sensors,and are vulnerable to potential sensor malfunctions,which are likely to occur in real industries especially for machines in harsh operating environments.In this paper,a deep learning-based remaining useful life(RUL)prediction method is proposed to address the sensor malfunction problem.A global feature extraction scheme is adopted to fully exploit information of different sensors.Adversarial learning is further introduced to extract generalized sensor-invariant features.Through explorations of both global and shared features,promising and robust RUL prediction performance can be achieved by the proposed method in the testing scenarios with sensor malfunctions.The experimental results suggest the proposed approach is well suited for real industrial applications. 展开更多
关键词 Adversarial training data fusion deep learning remaining useful life(RUL)prediction sensor malfunction
下载PDF
Driver Intent Prediction and Collision Avoidance With Barrier Functions
5
作者 Yousaf Rahman Abhishek Sharma +2 位作者 Mrdjan Jankovic Mario Santillo Michael Hafner 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第2期365-375,共11页
For autonomous vehicles and driver assist systems,path planning and collision avoidance algorithms benefit from accurate predictions of future location of other vehicles and intent of their drivers.In the literature,t... For autonomous vehicles and driver assist systems,path planning and collision avoidance algorithms benefit from accurate predictions of future location of other vehicles and intent of their drivers.In the literature,the algorithms that provide driver intent belong to two categories:those that use physics based models with some type of filtering,and machine learning based approaches.In this paper we employ barrier functions(BF)to decide driver intent.BFs are typically used to prove safety by establishing forward invariance of an admissible set.Here,we decide if the“target”vehicle is violating one or more possibly fictitious(i.e.,non-physical)barrier constraints determined based on the context provided by the road geometry.The algorithm has a very small computational footprint and better false positive and negative rates than some of the alternatives.The predicted intent is then used by a control barrier function(CBF)based collision avoidance system to prevent unnecessary interventions,for either an autonomous or human-driven vehicle. 展开更多
关键词 Driver Intent prediction and Collision Avoidance With Barrier functions INTENT
下载PDF
Computation-aided novel epitope prediction by targeting spike protein's functional dynamics in Omicron
6
作者 Bin Sun Yong Zhang Baofeng Yang 《Frigid Zone Medicine》 2023年第1期1-4,共4页
1 The ever-growing crisis imposed by Omicron The global corona virus disease 2019(COVID-19)pandemic caused by the severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)has lasted for more than 3 years and resulte... 1 The ever-growing crisis imposed by Omicron The global corona virus disease 2019(COVID-19)pandemic caused by the severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)has lasted for more than 3 years and resulted in about 657 million infections and 6.6 million deaths as of date 05 January,2023(https://covid19.who.int/).The latest variant of concern(VoC),Omicron,is leading a new wave of infections globally[1].Although small molecule inhibitors are emerging to show antiviral activities for SARS-CoV-2[2-3],only limited drugs have been approved(e.g.,remdesivir and baricitinib).Vaccination remains the preferred protection method,however,extra vaccine dose is often required to effectively neutralize Omicron[4];especially for the continuous evolution SARS-CoV-2 variants by constant mutations,escape from neutralizing antibodies is still a major concern that challenges the effectiveness of existing vaccines[5].This global public health crisis urgently demands developing effective antibodies against the Omicron. 展开更多
关键词 DRUGS NEUTRAL prediction
原文传递
Functional Nonparametric Predictions in Food Industry Using Near-Infrared Spectroscopy Measurement
7
作者 Ibrahim M.Almanjahie Omar Fetitah +1 位作者 Mohammed Kadi Attouch Tawfik Benchikh 《Computers, Materials & Continua》 SCIE EI 2023年第3期6307-6319,共13页
Functional statistics is a new technique for dealing with data thatcan be viewed as curves or images. Parallel to this approach, the Near-InfraredReflectance (NIR) spectroscopymethodology has been used in modern chemi... Functional statistics is a new technique for dealing with data thatcan be viewed as curves or images. Parallel to this approach, the Near-InfraredReflectance (NIR) spectroscopymethodology has been used in modern chemistryas a rapid, low-cost, and exact means of assessing an object’s chemicalproperties. In this research, we investigate the quality of corn and cookiedough by analyzing the spectroscopic technique using certain cutting-edgestatistical models. By analyzing spectral data and applying functional modelsto it, we could predict the chemical components of corn and cookie dough.Kernel Functional Classical Estimation (KFCE), Kernel Functional QuantileEstimation (KFQE), Kernel Functional Expectile Estimation (KFEE),Semi-Partial Linear Functional Classical Estimation (SPLFCE), Semi-PartialLinear Functional Quantile Estimation (SPLFQE), and Semi-Partial LinearFunctional Expectile Estimation (SPLFEE) are models used to accuratelyestimate the different quantities present in Corn and Cookie dough. Theselection of these functional models is based on their ability to constructa forecast region with a high level of confidence. We demonstrate that theconsidered models outperform traditional models such as the partial leastsquaresregression and the principal component regression in terms of predictionaccuracy. Furthermore, we show that the proposed models are morerobust than competing models such as SPLFQE and SPLFEE in the sensethat data heterogeneity has no effect on their efficiency. 展开更多
关键词 functional statistics NIR chemical component kernel estimation
下载PDF
Structural and functional connectivity of the whole brain and subnetworks in individuals with mild traumatic brain injury:predictors of patient prognosis
8
作者 Sihong Huang Jungong Han +4 位作者 Hairong Zheng Mengjun Li Chuxin Huang Xiaoyan Kui Jun Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1553-1558,共6页
Patients with mild traumatic brain injury have a diverse clinical presentation,and the underlying pathophysiology remains poorly understood.Magnetic resonance imaging is a non-invasive technique that has been widely u... Patients with mild traumatic brain injury have a diverse clinical presentation,and the underlying pathophysiology remains poorly understood.Magnetic resonance imaging is a non-invasive technique that has been widely utilized to investigate neuro biological markers after mild traumatic brain injury.This approach has emerged as a promising tool for investigating the pathogenesis of mild traumatic brain injury.G raph theory is a quantitative method of analyzing complex networks that has been widely used to study changes in brain structure and function.However,most previous mild traumatic brain injury studies using graph theory have focused on specific populations,with limited exploration of simultaneous abnormalities in structural and functional connectivity.Given that mild traumatic brain injury is the most common type of traumatic brain injury encounte red in clinical practice,further investigation of the patient characteristics and evolution of structural and functional connectivity is critical.In the present study,we explored whether abnormal structural and functional connectivity in the acute phase could serve as indicators of longitudinal changes in imaging data and cognitive function in patients with mild traumatic brain injury.In this longitudinal study,we enrolled 46 patients with mild traumatic brain injury who were assessed within 2 wee ks of injury,as well as 36 healthy controls.Resting-state functional magnetic resonance imaging and diffusion-weighted imaging data were acquired for graph theoretical network analysis.In the acute phase,patients with mild traumatic brain injury demonstrated reduced structural connectivity in the dorsal attention network.More than 3 months of followup data revealed signs of recovery in structural and functional connectivity,as well as cognitive function,in 22 out of the 46 patients.Furthermore,better cognitive function was associated with more efficient networks.Finally,our data indicated that small-worldness in the acute stage could serve as a predictor of longitudinal changes in connectivity in patients with mild traumatic brain injury.These findings highlight the importance of integrating structural and functional connectivity in unde rstanding the occurrence and evolution of mild traumatic brain injury.Additionally,exploratory analysis based on subnetworks could serve a predictive function in the prognosis of patients with mild traumatic brain injury. 展开更多
关键词 cognitive function CROSS-SECTION FOLLOW-UP functional connectivity graph theory longitudinal study mild traumatic brain injury prediction small-worldness structural connectivity subnetworks whole brain network
下载PDF
Product quality prediction based on RBF optimized by firefly algorithm
9
作者 HAN Huihui WANG Jian +1 位作者 CHEN Sen YAN Manting 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期105-117,共13页
With the development of information technology,a large number of product quality data in the entire manufacturing process is accumulated,but it is not explored and used effectively.The traditional product quality pred... With the development of information technology,a large number of product quality data in the entire manufacturing process is accumulated,but it is not explored and used effectively.The traditional product quality prediction models have many disadvantages,such as high complexity and low accuracy.To overcome the above problems,we propose an optimized data equalization method to pre-process dataset and design a simple but effective product quality prediction model:radial basis function model optimized by the firefly algorithm with Levy flight mechanism(RBFFALM).First,the new data equalization method is introduced to pre-process the dataset,which reduces the dimension of the data,removes redundant features,and improves the data distribution.Then the RBFFALFM is used to predict product quality.Comprehensive expe riments conducted on real-world product quality datasets validate that the new model RBFFALFM combining with the new data pre-processing method outperforms other previous me thods on predicting product quality. 展开更多
关键词 product quality prediction data pre-processing radial basis function swarm intelligence optimization algorithm
下载PDF
Game Theory Based Model for Predictive Analytics Using Distributed Position Function
10
作者 Mirhossein Mousavi Karimi Shahram Rahimi 《International Journal of Intelligence Science》 2024年第1期22-47,共26页
This paper presents a game theory-based method for predicting the outcomes of negotiation and group decision-making problems. We propose an extension to the BDM model to address problems where actors’ positions are d... This paper presents a game theory-based method for predicting the outcomes of negotiation and group decision-making problems. We propose an extension to the BDM model to address problems where actors’ positions are distributed over a position spectrum. We generalize the concept of position in the model to incorporate continuous positions for the actors, enabling them to have more flexibility in defining their targets. We explore different possible functions to study the role of the position function and discuss appropriate distance measures for computing the distance between the positions of actors. To validate the proposed extension, we demonstrate the trustworthiness of our model’s performance and interpretation by replicating the results based on data used in earlier studies. 展开更多
关键词 Distributed Position function Game Theory Group Decision Making Predictive Analytics
下载PDF
Nonparametric Statistical Feature Scaling Based Quadratic Regressive Convolution Deep Neural Network for Software Fault Prediction
11
作者 Sureka Sivavelu Venkatesh Palanisamy 《Computers, Materials & Continua》 SCIE EI 2024年第3期3469-3487,共19页
The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software w... The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software with defects negatively impacts operational costs and finally affects customer satisfaction. Numerous approaches exist to predict software defects. However, the timely and accurate software bugs are the major challenging issues. To improve the timely and accurate software defect prediction, a novel technique called Nonparametric Statistical feature scaled QuAdratic regressive convolution Deep nEural Network (SQADEN) is introduced. The proposed SQADEN technique mainly includes two major processes namely metric or feature selection and classification. First, the SQADEN uses the nonparametric statistical Torgerson–Gower scaling technique for identifying the relevant software metrics by measuring the similarity using the dice coefficient. The feature selection process is used to minimize the time complexity of software fault prediction. With the selected metrics, software fault perdition with the help of the Quadratic Censored regressive convolution deep neural network-based classification. The deep learning classifier analyzes the training and testing samples using the contingency correlation coefficient. The softstep activation function is used to provide the final fault prediction results. To minimize the error, the Nelder–Mead method is applied to solve non-linear least-squares problems. Finally, accurate classification results with a minimum error are obtained at the output layer. Experimental evaluation is carried out with different quantitative metrics such as accuracy, precision, recall, F-measure, and time complexity. The analyzed results demonstrate the superior performance of our proposed SQADEN technique with maximum accuracy, sensitivity and specificity by 3%, 3%, 2% and 3% and minimum time and space by 13% and 15% when compared with the two state-of-the-art methods. 展开更多
关键词 Software defect prediction feature selection nonparametric statistical Torgerson-Gower scaling technique quadratic censored regressive convolution deep neural network softstep activation function nelder-mead method
下载PDF
Small but big leaps towards neuroglycomics:exploring N-glycome in the brain to advance the understanding of brain development and function
12
作者 Boyoung Lee Hyun Joo An 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期489-490,共2页
Glycosylation is a process that involves the addition of sugar moieties or glycans to different types of molecules,including proteins,lipids,and nucleic acids.Among these,protein glycosylation is one of the most preva... Glycosylation is a process that involves the addition of sugar moieties or glycans to different types of molecules,including proteins,lipids,and nucleic acids.Among these,protein glycosylation is one of the most prevalent forms of post-translational modification,playing a crucial role in biological complexity.With more than ten monosaccharides identified within mammalian brain cells and more than 1×1012 possible combinations,the heterogeneity of glycosylation is extensive(Conroy et al.,2021).The diversity of glycans and the complexity of their structures allow for a wide range of protein functions.N-glycans are one of the most abundant forms of glycans and are involved in various cellular functions.N-glycans can be added to proteins at specific sequons,Asn-X-Ser/Thr,and are classified into three main types in mature glycoproteins:high mannose,complex,and hybrid.High mannose N-glycans consist of 5-9 mannose residues linked to a chitobiose core and undergo processing into complex or hybrid forms in the Golgi apparatus(Varki et al.,2017).Complex N-glycans are more diverse and contain various branched structures such as antennae with fucose,galactose,and sialic acid residues.Hybrid N-glycans contain one or more complex branches in conjunction with an oligomannose branch(Fisher and Ungar,2016).Understanding the specific functions of these different types of N-glycans in protein regulation,folding,and function is an active area of research in the life sciences,including glycobiology. 展开更多
关键词 functions function apparatus
下载PDF
Elevated brain temperature under severe heat exposure impairs cortical motor activity and executive function
13
作者 Xiang Ren Tan Mary C.Stephenson +4 位作者 Sharifah Badriyah Alhadad Kelvin W.Z.Loh Tuck Wah Soong Jason K.W.Lee Ivan C.C.Low 《Journal of Sport and Health Science》 SCIE CAS CSCD 2024年第2期233-244,共12页
Background:Excessive heat exposure can lead to hyperthermia in humans,which impairs physical performance and disrupts cognitive function.While heat is a known physiological stressor,it is unclear how severe heat stres... Background:Excessive heat exposure can lead to hyperthermia in humans,which impairs physical performance and disrupts cognitive function.While heat is a known physiological stressor,it is unclear how severe heat stress affects brain physiology and function.Methods:Eleven healthy participants were subjected to heat stress from prolonged exercise or warm water immersion until their rectal temperatures(T_(re))attained 39.5℃,inducing exertional or passive hyperthermia,respectively.In a separate trial,blended ice was ingested before and during exercise as a cooling strategy.Data were compared to a control condition with seated rest(normothermic).Brain temperature(T_(br)),cerebral perfusion,and task-based brain activity were assessed using magnetic resonance imaging techniques.Results:T_(br)in motor cortex was found to be tightly regulated at rest(37.3℃±0.4℃(mean±SD))despite fluctuations in T_(re).With the development of hyperthermia,T_(br)increases and dovetails with the rising T_(re).Bilateral motor cortical activity was suppressed during high-intensity plantarflexion tasks,implying a reduced central motor drive in hyperthermic participants(T_(re)=38.5℃±0.1℃).Global gray matter perfusion and regional perfusion in sensorimotor cortex were reduced with passive hyperthermia.Executive function was poorer under a passive hyperthermic state,and this could relate to compromised visual processing as indicated by the reduced activation of left lateral-occipital cortex.Conversely,ingestion of blended ice before and during exercise alleviated the rise in both T_(re)and T_(bc)and mitigated heat-related neural perturbations.Conclusion:Severe heat exposure elevates T_(br),disrupts motor cortical activity and executive function,and this can lead to impairment of physical and cognitive performance. 展开更多
关键词 Brain functional activity COGNITION Heat stress HYPERTHERMIA Motor function
下载PDF
Note on:“Ballistic model for the prediction of penetration depth and residual velocity in adobe:A new interpretation of the ballistic resistance of earthen masonry”
14
作者 Andreas Heine Matthias Wickert 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期607-609,共3页
A recently published modeling approach for the penetration into adobe and previous approaches implicitly criticized are reviewed and discussed.This article contains a note on the paper titled“Ballistic model for the ... A recently published modeling approach for the penetration into adobe and previous approaches implicitly criticized are reviewed and discussed.This article contains a note on the paper titled“Ballistic model for the prediction of penetration depth and residual velocity in adobe:A new interpretation of the ballistic resistance of earthen masonry”(DOI:https://doi.org/10.1016/j.dt.2018.07.017).Reply to the Note from Li Piani et al is linked to this article. 展开更多
关键词 ADOBE prediction earth
下载PDF
Advancing Malaria Prediction in Uganda through AI and Geospatial Analysis Models
15
作者 Maria Assumpta Komugabe Richard Caballero +1 位作者 Itamar Shabtai Simon Peter Musinguzi 《Journal of Geographic Information System》 2024年第2期115-135,共21页
The resurgence of locally acquired malaria cases in the USA and the persistent global challenge of malaria transmission highlight the urgent need for research to prevent this disease. Despite significant eradication e... The resurgence of locally acquired malaria cases in the USA and the persistent global challenge of malaria transmission highlight the urgent need for research to prevent this disease. Despite significant eradication efforts, malaria remains a serious threat, particularly in regions like Africa. This study explores how integrating Gregor’s Type IV theory with Geographic Information Systems (GIS) improves our understanding of disease dynamics, especially Malaria transmission patterns in Uganda. By combining data-driven algorithms, artificial intelligence, and geospatial analysis, the research aims to determine the most reliable predictors of Malaria incident rates and assess the impact of different factors on transmission. Using diverse predictive modeling techniques including Linear Regression, K-Nearest Neighbor, Neural Network, and Random Forest, the study found that;Random Forest model outperformed the others, demonstrating superior predictive accuracy with an R<sup>2</sup> of approximately 0.88 and a Mean Squared Error (MSE) of 0.0534, Antimalarial treatment was identified as the most influential factor, with mosquito net access associated with a significant reduction in incident rates, while higher temperatures correlated with increased rates. Our study concluded that the Random Forest model was effective in predicting malaria incident rates in Uganda and highlighted the significance of climate factors and preventive measures such as mosquito nets and antimalarial drugs. We recommended that districts with malaria hotspots lacking Indoor Residual Spraying (IRS) coverage prioritize its implementation to mitigate incident rates, while those with high malaria rates in 2020 require immediate attention. By advocating for the use of appropriate predictive models, our research emphasized the importance of evidence-based decision-making in malaria control strategies, aiming to reduce transmission rates and save lives. 展开更多
关键词 MALARIA Predictive Modeling Geospatial Analysis Climate Factors Preventive Measures
下载PDF
Privacy-Preserving Federated Mobility Prediction with Compound Data and Model Perturbation Mechanism
16
作者 Long Qingyue Wang Huandong +4 位作者 Chen Huiming Jin Depeng Zhu Lin Yu Li Li Yong 《China Communications》 SCIE CSCD 2024年第3期160-173,共14页
Human mobility prediction is important for many applications.However,training an accurate mobility prediction model requires a large scale of human trajectories,where privacy issues become an important problem.The ris... Human mobility prediction is important for many applications.However,training an accurate mobility prediction model requires a large scale of human trajectories,where privacy issues become an important problem.The rising federated learning provides us with a promising solution to this problem,which enables mobile devices to collaboratively learn a shared prediction model while keeping all the training data on the device,decoupling the ability to do machine learning from the need to store the data in the cloud.However,existing federated learningbased methods either do not provide privacy guarantees or have vulnerability in terms of privacy leakage.In this paper,we combine the techniques of data perturbation and model perturbation mechanisms and propose a privacy-preserving mobility prediction algorithm,where we add noise to the transmitted model and the raw data collaboratively to protect user privacy and keep the mobility prediction performance.Extensive experimental results show that our proposed method significantly outperforms the existing stateof-the-art mobility prediction method in terms of defensive performance against practical attacks while having comparable mobility prediction performance,demonstrating its effectiveness. 展开更多
关键词 federated learning mobility prediction PRIVACY
下载PDF
Beyond functional MRI signals:molecular and cellular modifiers of the functional connectome and cognition
17
作者 Lorenzo Pini Alessandro Salvalaggio Maurizio Corbetta 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第5期937-938,共2页
Our brain is constantly active.Even at rest,the brain carries out essential functions such as maintenance of resting potentials,subthreshold synaptic activity,and spiking activity related to information processing.Thi... Our brain is constantly active.Even at rest,the brain carries out essential functions such as maintenance of resting potentials,subthreshold synaptic activity,and spiking activity related to information processing.This resting activity can be assessed with several in vivo tools,such as resting-state functional magnetic resonance imaging.This technique measures subtle changes in blood flow,volume,and oxygenation that occur over time.Although vascular in nature,resting-state functional magnetic resonance imaging is considered a reliable proxy of neural activity and several studies have shown that the brain is functionally divided into interacting neural networks called the“functional connectome”. 展开更多
关键词 functional neural measures
下载PDF
A divergent pattern in functional connectivity: a transdiagnostic perspective
18
作者 Lu Zhang Lorenzo Pini 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期1885-1886,共2页
Functional magnetic resonance imaging(fMRI)is a popular tool used to investigate not only how the brain responds to specific stimuli during sensorimotor or cognitive tasks,but also brain activity at rest.The physics b... Functional magnetic resonance imaging(fMRI)is a popular tool used to investigate not only how the brain responds to specific stimuli during sensorimotor or cognitive tasks,but also brain activity at rest.The physics beyond this approach is based on the analysis of the blood oxygenation level-dependent signal. 展开更多
关键词 PATTERN CONNECTIVITY functionAL
下载PDF
Classifying rockburst with confidence:A novel conformal prediction approach
19
作者 Bemah Ibrahim Isaac Ahenkorah 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期51-64,共14页
The scientific community recognizes the seriousness of rockbursts and the need for effective mitigation measures.The literature reports various successful applications of machine learning(ML)models for rockburst asses... The scientific community recognizes the seriousness of rockbursts and the need for effective mitigation measures.The literature reports various successful applications of machine learning(ML)models for rockburst assessment;however,a significant question remains unanswered:How reliable are these models,and at what confidence level are classifications made?Typically,ML models output single rockburst grade even in the face of intricate and out-of-distribution samples,without any associated confidence value.Given the susceptibility of ML models to errors,it becomes imperative to quantify their uncertainty to prevent consequential failures.To address this issue,we propose a conformal prediction(CP)framework built on traditional ML models(extreme gradient boosting and random forest)to generate valid classifications of rockburst while producing a measure of confidence for its output.The proposed framework guarantees marginal coverage and,in most cases,conditional coverage on the test dataset.The CP was evaluated on a rockburst case in the Sanshandao Gold Mine in China,where it achieved high coverage and efficiency at applicable confidence levels.Significantly,the CP identified several“confident”classifications from the traditional ML model as unreliable,necessitating expert verification for informed decision-making.The proposed framework improves the reliability and accuracy of rockburst assessments,with the potential to bolster user confidence. 展开更多
关键词 ROCKBURST Machine learning Uncertainty quantification Conformal prediction
下载PDF
Tau's function and dysfunction in the brain:when small changes have big consequences
20
作者 Miguel Portillo Debra Toiber 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期152-153,共2页
With the increase of life expectancy and population growth,neurodegenerative diseases have risen too and are projected to be a major health public concern by 2050.Neurodegenerative diseases are characterized by the pr... With the increase of life expectancy and population growth,neurodegenerative diseases have risen too and are projected to be a major health public concern by 2050.Neurodegenerative diseases are characterized by the progressive decline of cognitive function leading to the subsequent loss of autonomy.Although the underlying causes of neurodegeneration are not well understood,aging is the main risk factor. 展开更多
关键词 DISEASES consequences function
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部