In robotics and human-robot interaction,a robot’s capacity to express and react correctly to human emotions is essential.A significant aspect of the capability involves controlling the robotic facial skin actuators i...In robotics and human-robot interaction,a robot’s capacity to express and react correctly to human emotions is essential.A significant aspect of the capability involves controlling the robotic facial skin actuators in a way that resonates with human emotions.This research focuses on human anthropometric theories to design and control robotic facial actuators,addressing the limitations of existing approaches in expressing emotions naturally and accurately.The facial landmarks are extracted to determine the anthropometric indicators for designing the robot head and is employed to the displacement of these points to calculate emotional values using Fuzzy C-Mean(FCM).The rotating angles of skin actuators are required to account for the smaller emotions,which enhance the robot’s ability to perform emotions in reality.In addition,this study contributes a novel approach based on facial anthropometric indicators to tailor emotional expressions to diverse human characteristics,ensuring more personalized and intuitive interactions.The results demonstrated howfuzzy logic can be employed to improve a robot’s ability to express emotions,which are digitized into fuzzy values.This is also the contribution of the research,which laid the groundwork for robots that can interact with humans more intuitively and empathetically.The performed experiments demonstrated that the suitability of proposed models to conduct tasks related to human emotions with the accuracy of emotional value determination and motor angles is 0.96 and 0.97,respectively.展开更多
Feature selection methods rooted in rough sets confront two notable limitations:their high computa-tional complexity and sensitivity to noise,rendering them impractical for managing large-scale and noisy datasets.The ...Feature selection methods rooted in rough sets confront two notable limitations:their high computa-tional complexity and sensitivity to noise,rendering them impractical for managing large-scale and noisy datasets.The primary issue stems from these methods’undue reliance on all samples.To overcome these challenges,we introduce the concept of cross-similarity grounded in a robust fuzzy relation and design a rapid and robust feature selection algorithm.Firstly,we construct a robust fuzzy relation by introducing a truncation parameter.Then,based on this fuzzy relation,we propose the concept of cross-similarity,which emphasizes the sample-to-sample similarity relations that uniquely determine feature importance,rather than considering all such relations equally.After studying the manifestations and properties of cross-similarity across different fuzzy granularities,we propose a forward greedy feature selection algorithm that leverages cross-similarity as the foundation for information measurement.This algorithm significantly reduces the time complexity from O(m2n2)to O(mn2).Experimental findings reveal that the average runtime of five state-of-the-art comparison algorithms is roughly 3.7 times longer than our algorithm,while our algorithm achieves an average accuracy that surpasses those of the five comparison algorithms by approximately 3.52%.This underscores the effectiveness of our approach.This paper paves the way for applying feature selection algorithms grounded in fuzzy rough sets to large-scale gene datasets.展开更多
In this paper, by constructing the smallest equivalence relation θ∗on a finite fuzzy hypergroup H, the quotient group (the set of equivalence classes) H/θ∗is a nilpotent group, and the nilpotent group is characteriz...In this paper, by constructing the smallest equivalence relation θ∗on a finite fuzzy hypergroup H, the quotient group (the set of equivalence classes) H/θ∗is a nilpotent group, and the nilpotent group is characterized by the strong fuzzy regularity of the equivalence relation. Finally, the concept of θ-part of fuzzy hypergroup is introduced to determine the necessary and sufficient condition for the equivalence relation θto be transitive.展开更多
This study presents a new approach that advances the algorithm of similarity measures between generalized fuzzy numbers. Following a brief introduction to some properties of the proposed method, a comparative analysis...This study presents a new approach that advances the algorithm of similarity measures between generalized fuzzy numbers. Following a brief introduction to some properties of the proposed method, a comparative analysis based on 36 sets of generalized fuzzy numbers was performed, in which the degree of similarity of the fuzzy numbers was calculated with the proposed method and seven methods established by previous studies in the literature. The results of the analytical comparison show that the proposed similarity outperforms the existing methods by overcoming their drawbacks and yielding accurate outcomes in all calculations of similarity measures under consideration. Finally, in a numerical example that involves recommending cars to customers based on a nine-member linguistic term set, the proposed similarity measure proves to be competent in addressing fuzzy number recommendation problems.展开更多
Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pP...Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pPyFHSS)is more flexible in this regard than other theoretical fuzzy set-like models,even though some attempts have been made in the literature to address such uncertainties.This study investigates the elementary notions of pPyFHSS including its set-theoretic operations union,intersection,complement,OR-and AND-operations.Some results related to these operations are also modified for pPyFHSS.Additionally,the similarity measures between pPyFHSSs are formulated with the assistance of numerical examples and results.Lastly,an intelligent decision-assisted mechanism is developed with the proposal of a robust algorithm based on similarity measures for solving multi-attribute decision-making(MADM)problems.A case study that helps the decision-makers assess the best educational institution is discussed to validate the suggested system.The algorithmic results are compared with the most pertinent model to evaluate the adaptability of pPyFHSS,as it generalizes the classical possibility fuzzy set-like theoretical models.Similarly,while considering significant evaluating factors,the flexibility of pPyFHSS is observed through structural comparison.展开更多
Terrain Aided Navigation(TAN)technology has become increasingly important due to its effectiveness in environments where Global Positioning System(GPS)is unavailable.In recent years,TAN systems have been extensively r...Terrain Aided Navigation(TAN)technology has become increasingly important due to its effectiveness in environments where Global Positioning System(GPS)is unavailable.In recent years,TAN systems have been extensively researched for both aerial and underwater navigation applications.However,many TAN systems that rely on recursive Unmanned Aerial Vehicle(UAV)position estimation methods,such as Extended Kalman Filters(EKF),often face challenges with divergence and instability,particularly in highly non-linear systems.To address these issues,this paper proposes and investigates a hybrid two-stage TAN positioning system for UAVs that utilizes Particle Filter.To enhance the system’s robustness against uncertainties caused by noise and to estimate additional system states,a Fuzzy Particle Filter(FPF)is employed in the first stage.This approach introduces a novel terrain composite feature that enables a fuzzy expert system to analyze terrain non-linearities and dynamically adjust the number of particles in real-time.This design allows the UAV to be efficiently localized in GPS-denied environments while also reducing the computational complexity of the particle filter in real-time applications.In the second stage,an Error State Kalman Filter(ESKF)is implemented to estimate the UAV’s altitude.The ESKF is chosen over the conventional EKF method because it is more suitable for non-linear systems.Simulation results demonstrate that the proposed fuzzy-based terrain composite method achieves high positional accuracy while reducing computational time and memory usage.展开更多
The dramatic rise in the number of people living in cities has made many environmental and social problems worse.The search for a productive method for disposing of solid waste is the most notable of these problems.Ma...The dramatic rise in the number of people living in cities has made many environmental and social problems worse.The search for a productive method for disposing of solid waste is the most notable of these problems.Many scholars have referred to it as a fuzzy multi-attribute or multi-criteria decision-making problem using various fuzzy set-like approaches because of the inclusion of criteria and anticipated ambiguity.The goal of the current study is to use an innovative methodology to address the expected uncertainties in the problem of solid waste site selection.The characteristics(or sub-attributes)that decision-makers select and the degree of approximation they accept for various options can both be indicators of these uncertainties.To tackle these problems,a novel mathematical structure known as the fuzzy parameterized possibility single valued neutrosophic hypersoft expert set(ρˆ-set),which is initially described,is integrated with a modified version of Sanchez’s method.Following this,an intelligent algorithm is suggested.The steps of the suggested algorithm are explained with an example that explains itself.The compatibility of solid waste management sites and systems is discussed,and rankings are established along with detailed justifications for their viability.This study’s strengths lie in its application of fuzzy parameterization and possibility grading to effectively handle the uncertainties embodied in the parameters’nature and alternative approximations,respectively.It uses specific mathematical formulations to compute the fuzzy parameterized degrees and possibility grades that are missing from the prior literature.It is simpler for the decisionmakers to look at each option separately because the decision is uncertain.Comparing the computed results,it is discovered that they are consistent and dependable because of their preferred properties.展开更多
Underwater wireless sensor networks(UWSNs)rely on data aggregation to streamline routing operations by merging information at intermediate nodes before transmitting it to the sink.However,many existing data aggregatio...Underwater wireless sensor networks(UWSNs)rely on data aggregation to streamline routing operations by merging information at intermediate nodes before transmitting it to the sink.However,many existing data aggregation techniques are designed exclusively for static networks and fail to reflect the dynamic nature of underwater environments.Additionally,conventional multi-hop data gathering techniques often lead to energy depletion problems near the sink,commonly known as the energy hole issue.Moreover,cluster-based aggregation methods face significant challenges such as cluster head(CH)failures and collisions within clusters that degrade overall network performance.To address these limitations,this paper introduces an innovative framework,the Cluster-based Data Aggregation using Fuzzy Decision Model(CDAFDM),tailored for mobile UWSNs.The proposed method has four main phases:clustering,CH selection,data aggregation,and re-clustering.During CH selection,a fuzzy decision model is utilized to ensure efficient cluster head selection based on parameters such as residual energy,distance to the sink,and data delivery likelihood,enhancing network stability and energy efficiency.In the aggregation phase,CHs transmit a single,consolidated set of non-redundant data to the base station(BS),thereby reducing data duplication and saving energy.To adapt to the changing network topology,the re-clustering phase periodically updates cluster formations and reselects CHs.Simulation results show that CDAFDM outperforms current protocols such as CAPTAIN(Collection Algorithm for underwater oPTical-AcoustIc sensor Networks),EDDG(Event-Driven Data Gathering),and DCBMEC(Data Collection Based on Mobile Edge Computing)with a packet delivery ratio increase of up to 4%,an energy consumption reduction of 18%,and a data collection latency reduction of 52%.These findings highlight the framework’s potential for reliable and energy-efficient data aggregation mobile UWSNs.展开更多
This research explores the use of Fuzzy K-Nearest Neighbor(F-KNN)and Artificial Neural Networks(ANN)for predicting heart stroke incidents,focusing on the impact of feature selection methods,specifically Chi-Square and...This research explores the use of Fuzzy K-Nearest Neighbor(F-KNN)and Artificial Neural Networks(ANN)for predicting heart stroke incidents,focusing on the impact of feature selection methods,specifically Chi-Square and Best First Search(BFS).The study demonstrates that BFS significantly enhances the performance of both classifiers.With BFS preprocessing,the ANN model achieved an impressive accuracy of 97.5%,precision and recall of 97.5%,and an Receiver Operating Characteristics(ROC)area of 97.9%,outperforming the Chi-Square-based ANN,which recorded an accuracy of 91.4%.Similarly,the F-KNN model with BFS achieved an accuracy of 96.3%,precision and recall of 96.3%,and a Receiver Operating Characteristics(ROC)area of 96.2%,surpassing the performance of the Chi-Square F-KNN model,which showed an accuracy of 95%.These results highlight that BFS improves the ability to select the most relevant features,contributing to more reliable and accurate stroke predictions.The findings underscore the importance of using advanced feature selection methods like BFS to enhance the performance of machine learning models in healthcare applications,leading to better stroke risk management and improved patient outcomes.展开更多
Underwater Wireless Sensor Networks(UWSNs)are gaining popularity because of their potential uses in oceanography,seismic activity monitoring,environmental preservation,and underwater mapping.Yet,these networks are fac...Underwater Wireless Sensor Networks(UWSNs)are gaining popularity because of their potential uses in oceanography,seismic activity monitoring,environmental preservation,and underwater mapping.Yet,these networks are faced with challenges such as self-interference,long propagation delays,limited bandwidth,and changing network topologies.These challenges are coped with by designing advanced routing protocols.In this work,we present Under Water Fuzzy-Routing Protocol for Low power and Lossy networks(UWF-RPL),an enhanced fuzzy-based protocol that improves decision-making during path selection and traffic distribution over different network nodes.Our method extends RPL with the aid of fuzzy logic to optimize depth,energy,Received Signal Strength Indicator(RSSI)to Expected Transmission Count(ETX)ratio,and latency.Theproposed protocol outperforms other techniques in that it offersmore energy efficiency,better packet delivery,lowdelay,and no queue overflow.It also exhibits better scalability and reliability in dynamic underwater networks,which is of very high importance in maintaining the network operations efficiency and the lifetime of UWSNs optimized.Compared to other recent methods,it offers improved network convergence time(10%–23%),energy efficiency(15%),packet delivery(17%),and delay(24%).展开更多
Seepage refers to the flow of water through porous materials.This phenomenon has a crucial role in dam,slope,excavation,tunnel,and well design.Performing seepage analysis usually is a challenging task,as one must cope...Seepage refers to the flow of water through porous materials.This phenomenon has a crucial role in dam,slope,excavation,tunnel,and well design.Performing seepage analysis usually is a challenging task,as one must cope with the uncertainty associated with the parameters such as the hydraulic conductivity in the horizontal and vertical directions that drive this phenomenon.However,at the same time,the data on horizontal and vertical hydraulic conductivities are typically scarce in spatial resolution.In this context,so-called non-traditional approaches for uncertainty quantification(such as intervals and fuzzy variables)offer an interesting alternative to classical probabilistic methods,since they have been shown to be quite effective when limited information on the governing parameters of a phenomenon is available.Therefore,the main contribution of this study is the development of a framework for conducting seepage analysis in saturated soils,where uncertainty associated with hydraulic conductivity is characterized using fuzzy fields.This method to characterize uncertainty extends interval fields towards the domain of fuzzy numbers.In fact,it is illustrated that fuzzy fields are an effective tool for capturing uncertainties with a spatial component,since they allow one to account for available physical measurements.A case study in confined saturated soil shows that with the proposed framework,it is possible to quantify the uncertainty associated with seepage flow,exit gradient,and uplift force effectively.展开更多
The fuzzy comfortability of a wind-sensitive super-high tower crane is critical to guarantee occupant health and improve construction efficiency.Therefore,the wind-resistant fuzzy comfortability of a super-high tower ...The fuzzy comfortability of a wind-sensitive super-high tower crane is critical to guarantee occupant health and improve construction efficiency.Therefore,the wind-resistant fuzzy comfortability of a super-high tower crane in the Ma’anshan Yangtze River(MYR)Bridge site is analyzed in this paper.First,the membership function model that represents fuzzy comfortability is introduced in the probability density evolution method(PDEM).Second,based on Fechner’s law,the membership function curves are constructed according to three acceleration thresholds in ISO 2631.Then,the fuzzy comfortability for the super-high tower crane under stochastic wind loads is assessed on the basis of different cut-set levelsλ.Results show that the comfortability is over 0.9 under the required maximum operating wind velocity.The low sensitivity toλcan be observed in the reliability curves of ISOⅡandⅢmembership functions.The reliability of the ISOⅠmembership function is not sensitive toλwhenλ<0.7,whereas it becomes sensitive toλwhenλ>0.7.展开更多
This paper introduces fuzzy N-bipolar soft(FN-BS)sets,a novel mathematical framework designed to enhance multi-criteria decision-making(MCDM)processes under uncertainty.The study addresses a significant limitation in ...This paper introduces fuzzy N-bipolar soft(FN-BS)sets,a novel mathematical framework designed to enhance multi-criteria decision-making(MCDM)processes under uncertainty.The study addresses a significant limitation in existing models by unifying fuzzy logic,the consideration of bipolarity,and the ability to evaluate attributes on a multinary scale.The specific contributions of the FN-BS framework include:(1)a formal definition and settheoretic foundation,(2)the development of two innovative algorithms for solving decision-making(DM)problems,and(3)a comparative analysis demonstrating its superiority over established models.The proposed framework is applied to a real-world case study on selecting vaccination programs across multiple countries,showcasing consistent DM outcomes and exceptional adaptability to complex and uncertain scenarios.These results position FN-BS sets as a versatile and powerful tool for addressing dynamic DM challenges.展开更多
In this paper,a robust and consistent COVID-19 emergency decision-making approach is proposed based on q-rung linear diophantine fuzzy set(q-RLDFS),differential evolutionary(DE)optimization principles,and evidential r...In this paper,a robust and consistent COVID-19 emergency decision-making approach is proposed based on q-rung linear diophantine fuzzy set(q-RLDFS),differential evolutionary(DE)optimization principles,and evidential reasoning(ER)methodology.The proposed approach uses q-RLDFS in order to represent the evaluating values of the alternatives corresponding to the attributes.DE optimization is used to obtain the optimal weights of the attributes,and ER methodology is used to compute the aggregated q-rung linear diophantine fuzzy values(q-RLDFVs)of each alternative.Then the score values of alternatives are computed based on the aggregated q-RLDFVs.An alternative with the maximum score value is selected as a better one.The applicability of the proposed approach has been illustrated in COVID-19 emergency decision-making system and sustainable energy planning management.Moreover,we have validated the proposed approach with a numerical example.Finally,a comparative study is provided with the existing models,where the proposed approach is found to be robust to perform better and consistent in uncertain environments.展开更多
Human Activity Recognition(HAR)in drone-captured videos has become popular because of the interest in various fields such as video surveillance,sports analysis,and human-robot interaction.However,recognizing actions f...Human Activity Recognition(HAR)in drone-captured videos has become popular because of the interest in various fields such as video surveillance,sports analysis,and human-robot interaction.However,recognizing actions from such videos poses the following challenges:variations of human motion,the complexity of backdrops,motion blurs,occlusions,and restricted camera angles.This research presents a human activity recognition system to address these challenges by working with drones’red-green-blue(RGB)videos.The first step in the proposed system involves partitioning videos into frames and then using bilateral filtering to improve the quality of object foregrounds while reducing background interference before converting from RGB to grayscale images.The YOLO(You Only Look Once)algorithm detects and extracts humans from each frame,obtaining their skeletons for further processing.The joint angles,displacement and velocity,histogram of oriented gradients(HOG),3D points,and geodesic Distance are included.These features are optimized using Quadratic Discriminant Analysis(QDA)and utilized in a Neuro-Fuzzy Classifier(NFC)for activity classification.Real-world evaluations on the Drone-Action,Unmanned Aerial Vehicle(UAV)-Gesture,and Okutama-Action datasets substantiate the proposed system’s superiority in accuracy rates over existing methods.In particular,the system obtains recognition rates of 93%for drone action,97%for UAV gestures,and 81%for Okutama-action,demonstrating the system’s reliability and ability to learn human activity from drone videos.展开更多
Dividing wall batch distillation with middle vessel(DWBDM)is a new type of batch distillation column,with outstanding advantages of low capital cost,energy saving and flexible operation.However,temperature control of ...Dividing wall batch distillation with middle vessel(DWBDM)is a new type of batch distillation column,with outstanding advantages of low capital cost,energy saving and flexible operation.However,temperature control of DWBDM process is challenging,since inherently dynamic and highly nonlinear,which make it difficult to give the controller reasonable set value or optimal temperature profile for temperature control scheme.To overcome this obstacle,this study proposes a new strategy to develop temperature control scheme for DWBDM combining neural network soft-sensor with fuzzy control.Dynamic model of DWBDM was firstly developed and numerically solved by Python,with three control schemes:composition control by PID and fuzzy control respectively,and temperature control by fuzzy control with neural network soft-sensor.For dynamic process,the neural networks with memory functions,such as RNN,LSTM and GRU,are used to handle with time-series data.The results from a case example show that the new control scheme can perform a good temperature control of DWBDM with the same or even better product purities as traditional PID or fuzzy control,and fuzzy control could reduce the effect of prediction error from neural network,indicating that it is a highly feasible and effective control approach for DWBDM,and could even be extended to other dynamic processes.展开更多
In the context of advancing towards dual carbon goals,numerous factories are actively engaging in energy efficiency upgrades and transformations.To accurately pinpoint energy efficiency bottlenecks within factories an...In the context of advancing towards dual carbon goals,numerous factories are actively engaging in energy efficiency upgrades and transformations.To accurately pinpoint energy efficiency bottlenecks within factories and prioritize renovation sequences,it is crucial to conduct comprehensive evaluations of the energy performance across various workshops.Therefore,this paper proposes an evaluation model for workshop energy efficiency based on the drive-state-response(DSR)framework combined with the fuzzy BORDA method.Firstly,an in-depth analysis of the relationships between different energy efficiency indicators was conducted.Based on the DSR model,evaluation criteria were selected from three dimensions-drive factors,state characteristics,and response measures-to establish a robust energy efficiency indicator system.Secondly,three distinct assessment techniques were selected:Grey Relational Analysis(GRA),Entropy Weight Method(EWM),and Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)forming a diversified set of evaluation methods.Subsequently,by introducing the fuzzy BORDA method,a comprehensive energy efficiency evaluation model was developed,aimed at quantitatively ranking the energy performance status of each workshop.Using a real-world factory as a case study,applying our proposed evaluationmodel yielded detailed scores and rankings for each workshop.Furthermore,post hoc testing was performed using the Spearman correlation coefficient,revealing a statistic value of 10.209,which validates the effectiveness and reliability of the proposed evaluation model.This model not only assists in identifying underperforming workshops within the factory but also provides solid data support and a decision-making basis for future energy efficiency optimization strategies.展开更多
Concentrating Solar Power(CSP)is one of the most promising solar technologies for sustainable power generation in countrieswith high solar potential,likeChad.Identifying suitable sites is of great importance for deplo...Concentrating Solar Power(CSP)is one of the most promising solar technologies for sustainable power generation in countrieswith high solar potential,likeChad.Identifying suitable sites is of great importance for deploying solar power plants.This work focuses on the identification of potential sites for the installation of solar power plants in Chad as well as a comparative analysis using the Analytical Hierarchy Process(AHP),Fuzzy Analytical Hierarchy Process(FAHP),and Full Consistency Method(FUCOM).The results show that 35%of the Chadian territory,i.e.,an area of 449,400 km2,is compatible with the implementation of Concentrating Solar Power.The North,North,East,Southeast,and East zones are the most suitable.The main criteria for influence are direct normal irradiation,the soil slope,and the water resource.FUCOM gave a weight of 41.9%for Direct Normal Irradiation(DNI)compared to 32.71%and 31.81%for AHP and FAHP.This method can be applied to other renewable energy technologies such as photovoltaics,wind power,and biomass.Combining its different analyses will be a valuable tool for planning any renewable energy project in Chad.This work should also facilitate the techno-economic analysis of future CSP plants in Chad.展开更多
基金funded by the University of Economics Ho Chi Minh City-UEH,Vietnam.
文摘In robotics and human-robot interaction,a robot’s capacity to express and react correctly to human emotions is essential.A significant aspect of the capability involves controlling the robotic facial skin actuators in a way that resonates with human emotions.This research focuses on human anthropometric theories to design and control robotic facial actuators,addressing the limitations of existing approaches in expressing emotions naturally and accurately.The facial landmarks are extracted to determine the anthropometric indicators for designing the robot head and is employed to the displacement of these points to calculate emotional values using Fuzzy C-Mean(FCM).The rotating angles of skin actuators are required to account for the smaller emotions,which enhance the robot’s ability to perform emotions in reality.In addition,this study contributes a novel approach based on facial anthropometric indicators to tailor emotional expressions to diverse human characteristics,ensuring more personalized and intuitive interactions.The results demonstrated howfuzzy logic can be employed to improve a robot’s ability to express emotions,which are digitized into fuzzy values.This is also the contribution of the research,which laid the groundwork for robots that can interact with humans more intuitively and empathetically.The performed experiments demonstrated that the suitability of proposed models to conduct tasks related to human emotions with the accuracy of emotional value determination and motor angles is 0.96 and 0.97,respectively.
基金supported by the Anhui Provincial Department of Education University Research Project(2024AH051375)Research Project of Chizhou University(CZ2022ZRZ06)+1 种基金Anhui Province Natural Science Research Project of Colleges and Universities(2024AH051368)Excellent Scientific Research and Innovation Team of Anhui Colleges(2022AH010098).
文摘Feature selection methods rooted in rough sets confront two notable limitations:their high computa-tional complexity and sensitivity to noise,rendering them impractical for managing large-scale and noisy datasets.The primary issue stems from these methods’undue reliance on all samples.To overcome these challenges,we introduce the concept of cross-similarity grounded in a robust fuzzy relation and design a rapid and robust feature selection algorithm.Firstly,we construct a robust fuzzy relation by introducing a truncation parameter.Then,based on this fuzzy relation,we propose the concept of cross-similarity,which emphasizes the sample-to-sample similarity relations that uniquely determine feature importance,rather than considering all such relations equally.After studying the manifestations and properties of cross-similarity across different fuzzy granularities,we propose a forward greedy feature selection algorithm that leverages cross-similarity as the foundation for information measurement.This algorithm significantly reduces the time complexity from O(m2n2)to O(mn2).Experimental findings reveal that the average runtime of five state-of-the-art comparison algorithms is roughly 3.7 times longer than our algorithm,while our algorithm achieves an average accuracy that surpasses those of the five comparison algorithms by approximately 3.52%.This underscores the effectiveness of our approach.This paper paves the way for applying feature selection algorithms grounded in fuzzy rough sets to large-scale gene datasets.
文摘In this paper, by constructing the smallest equivalence relation θ∗on a finite fuzzy hypergroup H, the quotient group (the set of equivalence classes) H/θ∗is a nilpotent group, and the nilpotent group is characterized by the strong fuzzy regularity of the equivalence relation. Finally, the concept of θ-part of fuzzy hypergroup is introduced to determine the necessary and sufficient condition for the equivalence relation θto be transitive.
文摘This study presents a new approach that advances the algorithm of similarity measures between generalized fuzzy numbers. Following a brief introduction to some properties of the proposed method, a comparative analysis based on 36 sets of generalized fuzzy numbers was performed, in which the degree of similarity of the fuzzy numbers was calculated with the proposed method and seven methods established by previous studies in the literature. The results of the analytical comparison show that the proposed similarity outperforms the existing methods by overcoming their drawbacks and yielding accurate outcomes in all calculations of similarity measures under consideration. Finally, in a numerical example that involves recommending cars to customers based on a nine-member linguistic term set, the proposed similarity measure proves to be competent in addressing fuzzy number recommendation problems.
基金supported by the Deanship of Graduate Studies and Scientific Research at Qassim University(QU-APC-2024-9/1).
文摘Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pPyFHSS)is more flexible in this regard than other theoretical fuzzy set-like models,even though some attempts have been made in the literature to address such uncertainties.This study investigates the elementary notions of pPyFHSS including its set-theoretic operations union,intersection,complement,OR-and AND-operations.Some results related to these operations are also modified for pPyFHSS.Additionally,the similarity measures between pPyFHSSs are formulated with the assistance of numerical examples and results.Lastly,an intelligent decision-assisted mechanism is developed with the proposal of a robust algorithm based on similarity measures for solving multi-attribute decision-making(MADM)problems.A case study that helps the decision-makers assess the best educational institution is discussed to validate the suggested system.The algorithmic results are compared with the most pertinent model to evaluate the adaptability of pPyFHSS,as it generalizes the classical possibility fuzzy set-like theoretical models.Similarly,while considering significant evaluating factors,the flexibility of pPyFHSS is observed through structural comparison.
文摘Terrain Aided Navigation(TAN)technology has become increasingly important due to its effectiveness in environments where Global Positioning System(GPS)is unavailable.In recent years,TAN systems have been extensively researched for both aerial and underwater navigation applications.However,many TAN systems that rely on recursive Unmanned Aerial Vehicle(UAV)position estimation methods,such as Extended Kalman Filters(EKF),often face challenges with divergence and instability,particularly in highly non-linear systems.To address these issues,this paper proposes and investigates a hybrid two-stage TAN positioning system for UAVs that utilizes Particle Filter.To enhance the system’s robustness against uncertainties caused by noise and to estimate additional system states,a Fuzzy Particle Filter(FPF)is employed in the first stage.This approach introduces a novel terrain composite feature that enables a fuzzy expert system to analyze terrain non-linearities and dynamically adjust the number of particles in real-time.This design allows the UAV to be efficiently localized in GPS-denied environments while also reducing the computational complexity of the particle filter in real-time applications.In the second stage,an Error State Kalman Filter(ESKF)is implemented to estimate the UAV’s altitude.The ESKF is chosen over the conventional EKF method because it is more suitable for non-linear systems.Simulation results demonstrate that the proposed fuzzy-based terrain composite method achieves high positional accuracy while reducing computational time and memory usage.
文摘The dramatic rise in the number of people living in cities has made many environmental and social problems worse.The search for a productive method for disposing of solid waste is the most notable of these problems.Many scholars have referred to it as a fuzzy multi-attribute or multi-criteria decision-making problem using various fuzzy set-like approaches because of the inclusion of criteria and anticipated ambiguity.The goal of the current study is to use an innovative methodology to address the expected uncertainties in the problem of solid waste site selection.The characteristics(or sub-attributes)that decision-makers select and the degree of approximation they accept for various options can both be indicators of these uncertainties.To tackle these problems,a novel mathematical structure known as the fuzzy parameterized possibility single valued neutrosophic hypersoft expert set(ρˆ-set),which is initially described,is integrated with a modified version of Sanchez’s method.Following this,an intelligent algorithm is suggested.The steps of the suggested algorithm are explained with an example that explains itself.The compatibility of solid waste management sites and systems is discussed,and rankings are established along with detailed justifications for their viability.This study’s strengths lie in its application of fuzzy parameterization and possibility grading to effectively handle the uncertainties embodied in the parameters’nature and alternative approximations,respectively.It uses specific mathematical formulations to compute the fuzzy parameterized degrees and possibility grades that are missing from the prior literature.It is simpler for the decisionmakers to look at each option separately because the decision is uncertain.Comparing the computed results,it is discovered that they are consistent and dependable because of their preferred properties.
基金funded by the Deanship of Scientific Research,the Vice Presidency for Graduate Studies and Scientific Research,King Faisal University,Saudi Arabia under the project(KFU250420).
文摘Underwater wireless sensor networks(UWSNs)rely on data aggregation to streamline routing operations by merging information at intermediate nodes before transmitting it to the sink.However,many existing data aggregation techniques are designed exclusively for static networks and fail to reflect the dynamic nature of underwater environments.Additionally,conventional multi-hop data gathering techniques often lead to energy depletion problems near the sink,commonly known as the energy hole issue.Moreover,cluster-based aggregation methods face significant challenges such as cluster head(CH)failures and collisions within clusters that degrade overall network performance.To address these limitations,this paper introduces an innovative framework,the Cluster-based Data Aggregation using Fuzzy Decision Model(CDAFDM),tailored for mobile UWSNs.The proposed method has four main phases:clustering,CH selection,data aggregation,and re-clustering.During CH selection,a fuzzy decision model is utilized to ensure efficient cluster head selection based on parameters such as residual energy,distance to the sink,and data delivery likelihood,enhancing network stability and energy efficiency.In the aggregation phase,CHs transmit a single,consolidated set of non-redundant data to the base station(BS),thereby reducing data duplication and saving energy.To adapt to the changing network topology,the re-clustering phase periodically updates cluster formations and reselects CHs.Simulation results show that CDAFDM outperforms current protocols such as CAPTAIN(Collection Algorithm for underwater oPTical-AcoustIc sensor Networks),EDDG(Event-Driven Data Gathering),and DCBMEC(Data Collection Based on Mobile Edge Computing)with a packet delivery ratio increase of up to 4%,an energy consumption reduction of 18%,and a data collection latency reduction of 52%.These findings highlight the framework’s potential for reliable and energy-efficient data aggregation mobile UWSNs.
基金funded by FCT/MECI through national funds and,when applicable,co-funded EU funds under UID/50008:Instituto de Telecomunicacoes.
文摘This research explores the use of Fuzzy K-Nearest Neighbor(F-KNN)and Artificial Neural Networks(ANN)for predicting heart stroke incidents,focusing on the impact of feature selection methods,specifically Chi-Square and Best First Search(BFS).The study demonstrates that BFS significantly enhances the performance of both classifiers.With BFS preprocessing,the ANN model achieved an impressive accuracy of 97.5%,precision and recall of 97.5%,and an Receiver Operating Characteristics(ROC)area of 97.9%,outperforming the Chi-Square-based ANN,which recorded an accuracy of 91.4%.Similarly,the F-KNN model with BFS achieved an accuracy of 96.3%,precision and recall of 96.3%,and a Receiver Operating Characteristics(ROC)area of 96.2%,surpassing the performance of the Chi-Square F-KNN model,which showed an accuracy of 95%.These results highlight that BFS improves the ability to select the most relevant features,contributing to more reliable and accurate stroke predictions.The findings underscore the importance of using advanced feature selection methods like BFS to enhance the performance of machine learning models in healthcare applications,leading to better stroke risk management and improved patient outcomes.
文摘Underwater Wireless Sensor Networks(UWSNs)are gaining popularity because of their potential uses in oceanography,seismic activity monitoring,environmental preservation,and underwater mapping.Yet,these networks are faced with challenges such as self-interference,long propagation delays,limited bandwidth,and changing network topologies.These challenges are coped with by designing advanced routing protocols.In this work,we present Under Water Fuzzy-Routing Protocol for Low power and Lossy networks(UWF-RPL),an enhanced fuzzy-based protocol that improves decision-making during path selection and traffic distribution over different network nodes.Our method extends RPL with the aid of fuzzy logic to optimize depth,energy,Received Signal Strength Indicator(RSSI)to Expected Transmission Count(ETX)ratio,and latency.Theproposed protocol outperforms other techniques in that it offersmore energy efficiency,better packet delivery,lowdelay,and no queue overflow.It also exhibits better scalability and reliability in dynamic underwater networks,which is of very high importance in maintaining the network operations efficiency and the lifetime of UWSNs optimized.Compared to other recent methods,it offers improved network convergence time(10%–23%),energy efficiency(15%),packet delivery(17%),and delay(24%).
文摘Seepage refers to the flow of water through porous materials.This phenomenon has a crucial role in dam,slope,excavation,tunnel,and well design.Performing seepage analysis usually is a challenging task,as one must cope with the uncertainty associated with the parameters such as the hydraulic conductivity in the horizontal and vertical directions that drive this phenomenon.However,at the same time,the data on horizontal and vertical hydraulic conductivities are typically scarce in spatial resolution.In this context,so-called non-traditional approaches for uncertainty quantification(such as intervals and fuzzy variables)offer an interesting alternative to classical probabilistic methods,since they have been shown to be quite effective when limited information on the governing parameters of a phenomenon is available.Therefore,the main contribution of this study is the development of a framework for conducting seepage analysis in saturated soils,where uncertainty associated with hydraulic conductivity is characterized using fuzzy fields.This method to characterize uncertainty extends interval fields towards the domain of fuzzy numbers.In fact,it is illustrated that fuzzy fields are an effective tool for capturing uncertainties with a spatial component,since they allow one to account for available physical measurements.A case study in confined saturated soil shows that with the proposed framework,it is possible to quantify the uncertainty associated with seepage flow,exit gradient,and uplift force effectively.
基金The National Natural Science Foundation of China(No.52108274,52208481,52338011)State Scholarship Fund of China Scholarship Council(No.202306090285).
文摘The fuzzy comfortability of a wind-sensitive super-high tower crane is critical to guarantee occupant health and improve construction efficiency.Therefore,the wind-resistant fuzzy comfortability of a super-high tower crane in the Ma’anshan Yangtze River(MYR)Bridge site is analyzed in this paper.First,the membership function model that represents fuzzy comfortability is introduced in the probability density evolution method(PDEM).Second,based on Fechner’s law,the membership function curves are constructed according to three acceleration thresholds in ISO 2631.Then,the fuzzy comfortability for the super-high tower crane under stochastic wind loads is assessed on the basis of different cut-set levelsλ.Results show that the comfortability is over 0.9 under the required maximum operating wind velocity.The low sensitivity toλcan be observed in the reliability curves of ISOⅡandⅢmembership functions.The reliability of the ISOⅠmembership function is not sensitive toλwhenλ<0.7,whereas it becomes sensitive toλwhenλ>0.7.
文摘This paper introduces fuzzy N-bipolar soft(FN-BS)sets,a novel mathematical framework designed to enhance multi-criteria decision-making(MCDM)processes under uncertainty.The study addresses a significant limitation in existing models by unifying fuzzy logic,the consideration of bipolarity,and the ability to evaluate attributes on a multinary scale.The specific contributions of the FN-BS framework include:(1)a formal definition and settheoretic foundation,(2)the development of two innovative algorithms for solving decision-making(DM)problems,and(3)a comparative analysis demonstrating its superiority over established models.The proposed framework is applied to a real-world case study on selecting vaccination programs across multiple countries,showcasing consistent DM outcomes and exceptional adaptability to complex and uncertain scenarios.These results position FN-BS sets as a versatile and powerful tool for addressing dynamic DM challenges.
文摘In this paper,a robust and consistent COVID-19 emergency decision-making approach is proposed based on q-rung linear diophantine fuzzy set(q-RLDFS),differential evolutionary(DE)optimization principles,and evidential reasoning(ER)methodology.The proposed approach uses q-RLDFS in order to represent the evaluating values of the alternatives corresponding to the attributes.DE optimization is used to obtain the optimal weights of the attributes,and ER methodology is used to compute the aggregated q-rung linear diophantine fuzzy values(q-RLDFVs)of each alternative.Then the score values of alternatives are computed based on the aggregated q-RLDFVs.An alternative with the maximum score value is selected as a better one.The applicability of the proposed approach has been illustrated in COVID-19 emergency decision-making system and sustainable energy planning management.Moreover,we have validated the proposed approach with a numerical example.Finally,a comparative study is provided with the existing models,where the proposed approach is found to be robust to perform better and consistent in uncertain environments.
基金funded by the Open Access Initiative of the University of Bremen and the DFG via SuUB Bremen.Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2024R348),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Human Activity Recognition(HAR)in drone-captured videos has become popular because of the interest in various fields such as video surveillance,sports analysis,and human-robot interaction.However,recognizing actions from such videos poses the following challenges:variations of human motion,the complexity of backdrops,motion blurs,occlusions,and restricted camera angles.This research presents a human activity recognition system to address these challenges by working with drones’red-green-blue(RGB)videos.The first step in the proposed system involves partitioning videos into frames and then using bilateral filtering to improve the quality of object foregrounds while reducing background interference before converting from RGB to grayscale images.The YOLO(You Only Look Once)algorithm detects and extracts humans from each frame,obtaining their skeletons for further processing.The joint angles,displacement and velocity,histogram of oriented gradients(HOG),3D points,and geodesic Distance are included.These features are optimized using Quadratic Discriminant Analysis(QDA)and utilized in a Neuro-Fuzzy Classifier(NFC)for activity classification.Real-world evaluations on the Drone-Action,Unmanned Aerial Vehicle(UAV)-Gesture,and Okutama-Action datasets substantiate the proposed system’s superiority in accuracy rates over existing methods.In particular,the system obtains recognition rates of 93%for drone action,97%for UAV gestures,and 81%for Okutama-action,demonstrating the system’s reliability and ability to learn human activity from drone videos.
基金supported by Beijing Natural Science Foundation(2222037)the Special Educating Project of the Talent for Carbon Peak and Carbon Neutrality of University of Chinese Academy of Sciences(Innovation of talent cultivation model for“dual carbon”in chemical engineering industry,E3E56501A2).
文摘Dividing wall batch distillation with middle vessel(DWBDM)is a new type of batch distillation column,with outstanding advantages of low capital cost,energy saving and flexible operation.However,temperature control of DWBDM process is challenging,since inherently dynamic and highly nonlinear,which make it difficult to give the controller reasonable set value or optimal temperature profile for temperature control scheme.To overcome this obstacle,this study proposes a new strategy to develop temperature control scheme for DWBDM combining neural network soft-sensor with fuzzy control.Dynamic model of DWBDM was firstly developed and numerically solved by Python,with three control schemes:composition control by PID and fuzzy control respectively,and temperature control by fuzzy control with neural network soft-sensor.For dynamic process,the neural networks with memory functions,such as RNN,LSTM and GRU,are used to handle with time-series data.The results from a case example show that the new control scheme can perform a good temperature control of DWBDM with the same or even better product purities as traditional PID or fuzzy control,and fuzzy control could reduce the effect of prediction error from neural network,indicating that it is a highly feasible and effective control approach for DWBDM,and could even be extended to other dynamic processes.
基金funded by the National Social Science Fund of China(Grant No.23BGL234).
文摘In the context of advancing towards dual carbon goals,numerous factories are actively engaging in energy efficiency upgrades and transformations.To accurately pinpoint energy efficiency bottlenecks within factories and prioritize renovation sequences,it is crucial to conduct comprehensive evaluations of the energy performance across various workshops.Therefore,this paper proposes an evaluation model for workshop energy efficiency based on the drive-state-response(DSR)framework combined with the fuzzy BORDA method.Firstly,an in-depth analysis of the relationships between different energy efficiency indicators was conducted.Based on the DSR model,evaluation criteria were selected from three dimensions-drive factors,state characteristics,and response measures-to establish a robust energy efficiency indicator system.Secondly,three distinct assessment techniques were selected:Grey Relational Analysis(GRA),Entropy Weight Method(EWM),and Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)forming a diversified set of evaluation methods.Subsequently,by introducing the fuzzy BORDA method,a comprehensive energy efficiency evaluation model was developed,aimed at quantitatively ranking the energy performance status of each workshop.Using a real-world factory as a case study,applying our proposed evaluationmodel yielded detailed scores and rankings for each workshop.Furthermore,post hoc testing was performed using the Spearman correlation coefficient,revealing a statistic value of 10.209,which validates the effectiveness and reliability of the proposed evaluation model.This model not only assists in identifying underperforming workshops within the factory but also provides solid data support and a decision-making basis for future energy efficiency optimization strategies.
文摘Concentrating Solar Power(CSP)is one of the most promising solar technologies for sustainable power generation in countrieswith high solar potential,likeChad.Identifying suitable sites is of great importance for deploying solar power plants.This work focuses on the identification of potential sites for the installation of solar power plants in Chad as well as a comparative analysis using the Analytical Hierarchy Process(AHP),Fuzzy Analytical Hierarchy Process(FAHP),and Full Consistency Method(FUCOM).The results show that 35%of the Chadian territory,i.e.,an area of 449,400 km2,is compatible with the implementation of Concentrating Solar Power.The North,North,East,Southeast,and East zones are the most suitable.The main criteria for influence are direct normal irradiation,the soil slope,and the water resource.FUCOM gave a weight of 41.9%for Direct Normal Irradiation(DNI)compared to 32.71%and 31.81%for AHP and FAHP.This method can be applied to other renewable energy technologies such as photovoltaics,wind power,and biomass.Combining its different analyses will be a valuable tool for planning any renewable energy project in Chad.This work should also facilitate the techno-economic analysis of future CSP plants in Chad.