期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
G-利普希茨跟踪性、G-等度连续和G-非游荡点集的研究
1
作者 冀占江 刘海林 《华南师范大学学报(自然科学版)》 CAS 北大核心 2024年第4期111-115,共5页
利用度量G-空间中映射f与轨道空间中诱导映射f之间的性质,研究了映射f的G-利普希茨跟踪性、G-等度连续、G-非游荡点与诱导映射f的利普希茨跟踪性、等度连续、非游荡点集之间的动力学关系,得到如下结论:(1)映射f具有G-利普希茨跟踪性■... 利用度量G-空间中映射f与轨道空间中诱导映射f之间的性质,研究了映射f的G-利普希茨跟踪性、G-等度连续、G-非游荡点与诱导映射f的利普希茨跟踪性、等度连续、非游荡点集之间的动力学关系,得到如下结论:(1)映射f具有G-利普希茨跟踪性■诱导映射f具有利普希茨跟踪性;(2)映射f是G-等度连续的■诱导映射f是等度连续的;(3)映射f的G-非游荡点集ΩG(f)在X中稠密?诱导映射f的非游荡点集Ω(f)在X/G中稠密。 展开更多
关键词 g-利普希茨跟踪性 g-等度连续 g-非游荡点 轨道空间
下载PDF
群作用下乘积映射的渐进平均和利普希茨跟踪性 被引量:1
2
作者 冀占江 张更容 涂井先 《河北师范大学学报(自然科学版)》 CAS 2019年第6期473-478,共6页
跟踪性在理论和应用中有着重要的意义,给出了拓扑群作用下乘积空间中G-渐进平均跟踪性和G-利普希茨跟踪性的概念,结合乘积映射和零密度集的性质,研究了乘积映射f×g与分映射f和g在这些跟踪性方面的关系,得到如下结论:1)乘积映射f... 跟踪性在理论和应用中有着重要的意义,给出了拓扑群作用下乘积空间中G-渐进平均跟踪性和G-利普希茨跟踪性的概念,结合乘积映射和零密度集的性质,研究了乘积映射f×g与分映射f和g在这些跟踪性方面的关系,得到如下结论:1)乘积映射f×g具有G-渐进平均跟踪性当且仅当f具有G1-渐进平均跟踪性,g具有G2-渐进平均跟踪性;2)乘积映射f×g具有G-利普希茨跟踪性当且仅当f具有G1-利普希茨跟踪性,g具有G2-利普希茨跟踪性.这些结论弥补了拓扑群作用下乘积空间中渐进平均跟踪性和利普希茨跟踪性理论的缺陷. 展开更多
关键词 g-渐进平均跟踪 g-利普希茨跟踪性 乘积映射 g-空间
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部