In this paper,using Parseval frames we generalize Sun’s results to g-frames in Hilbert C^(*)-modules.Moreover,for g-frames in Hilbert spaces,we present some characterizations in terms of a family of frames,not only f...In this paper,using Parseval frames we generalize Sun’s results to g-frames in Hilbert C^(*)-modules.Moreover,for g-frames in Hilbert spaces,we present some characterizations in terms of a family of frames,not only for orthonormal bases.Also,we have a note about a comment and a relation in the proof of Proposition 5.3 in[D.Li et al.,On weaving g-frames for Hilbert spaces,Complex Analysis and Operator Theory,2020].Finally,we have some results for g-Riesz bases,woven and P-woven g-frames.展开更多
In this paper,we present a new stability theorem on the perturbation of K-g-frames by using operator theory methods.The result we obtained improves one corresponding conclusion of other authors.
In this article, we introduce and characterize approximate duality for g-frames. We get some important properties and applications of approximate duals. We also obtain some new results in approximate duality of frames...In this article, we introduce and characterize approximate duality for g-frames. We get some important properties and applications of approximate duals. We also obtain some new results in approximate duality of frames, and generalize some of the known results in approximate duality of frames to g-frames. We also get some results for fusion frames, and perturbation of approximately dual g-frames. We show that approximate duals are stable under small perturbations and they are useful for erasures and reconstruction.展开更多
In this note, we establish a new characterization on g-frames in Hilbert C;-modules from the operator-theoretic point of view, with which we provide a correction to one result recently obtained by Yao(Yao X Y. Some pr...In this note, we establish a new characterization on g-frames in Hilbert C;-modules from the operator-theoretic point of view, with which we provide a correction to one result recently obtained by Yao(Yao X Y. Some properties of g-frames in Hilbert C;-modules(in Chinese). Acta Math. Sinica, 2011, 54(1): 1–8.).展开更多
In this paper, we first determine the relations among the best bounds A and B of the g-frame, the g-frame operator S and the pre-frame operator Q and give a necessary and sufficient condition for a g-frame with bounds...In this paper, we first determine the relations among the best bounds A and B of the g-frame, the g-frame operator S and the pre-frame operator Q and give a necessary and sufficient condition for a g-frame with bounds A and B in a complex Hilbert space. We also introduce the definition of a g-frame sequence and obtain a necessary and sufficient condition for a g-frame sequence with bounds A and B in a complex Hilbert space. Lastly, we consider the stability of a g-frame sequence for a complex Hilbert space under perturbation.展开更多
In this paper, we discuss the properties of g-frames and g-frame operators for Hilbert spaces by utilizing the method of operator theory. Furthermore, we study perturbations of g-frames, and obtain some meaningful res...In this paper, we discuss the properties of g-frames and g-frame operators for Hilbert spaces by utilizing the method of operator theory. Furthermore, we study perturbations of g-frames, and obtain some meaningful results.展开更多
In this paper, we introduce the pre-frame operator Q for the g-frame in a complex Hilbert space, which will play a key role in studying g-frames and g-Riesz bases etc. Using the pre-frame operator Q, we give some nece...In this paper, we introduce the pre-frame operator Q for the g-frame in a complex Hilbert space, which will play a key role in studying g-frames and g-Riesz bases etc. Using the pre-frame operator Q, we give some necessary and sufficient conditions for a g-Bessel sequence, a g-frame, and a g-Riesz basis in a complex Hilbert space, which have properties similar to those of the Bessel sequence, frame, and Riesz basis respectively. We also obtain the relation between a g-frame and a g-Riesz basis, and the relation of bounds between a g-frame and a g-Riesz basis. Lastly, we consider the stability of a g-frame or a g-Riesz basis for a Hilbert space under perturbation.展开更多
In this paper, we give an operator parameterization for the set of dilations of a given pair of dual g-frames and the set of dilations of pairs of dual g-frames of a given g-frame. In particular,for the dilations of a...In this paper, we give an operator parameterization for the set of dilations of a given pair of dual g-frames and the set of dilations of pairs of dual g-frames of a given g-frame. In particular,for the dilations of a given pair of dual g-frames, we introduce the concept of joint complementary g-frames and prove that the joint complementary g-frames of a pair of dual g-frames are unique in the sense of joint similarity, which then helps to obtain a sufficient condition such that the complementary g-frames of a g-frame are unique in the sense of similarity and show that the set of dilations of a given dual g-frame pair are parameterized by a set of invertible diagonal operators. For the dilations of pairs of dual g-frames, we prove that the set of dilations of pairs of dual g-frames are parameterized by a set of invertible upper triangular operators.展开更多
文摘In this paper,using Parseval frames we generalize Sun’s results to g-frames in Hilbert C^(*)-modules.Moreover,for g-frames in Hilbert spaces,we present some characterizations in terms of a family of frames,not only for orthonormal bases.Also,we have a note about a comment and a relation in the proof of Proposition 5.3 in[D.Li et al.,On weaving g-frames for Hilbert spaces,Complex Analysis and Operator Theory,2020].Finally,we have some results for g-Riesz bases,woven and P-woven g-frames.
文摘In this paper,we present a new stability theorem on the perturbation of K-g-frames by using operator theory methods.The result we obtained improves one corresponding conclusion of other authors.
文摘In this article, we introduce and characterize approximate duality for g-frames. We get some important properties and applications of approximate duals. We also obtain some new results in approximate duality of frames, and generalize some of the known results in approximate duality of frames to g-frames. We also get some results for fusion frames, and perturbation of approximately dual g-frames. We show that approximate duals are stable under small perturbations and they are useful for erasures and reconstruction.
基金The NSF(11271148,11561057)of Chinathe NSF(20151BAB201007)of Jiangxi Provincethe Science and Technology Project(GJJ151061)of Jiangxi Education Department
文摘In this note, we establish a new characterization on g-frames in Hilbert C;-modules from the operator-theoretic point of view, with which we provide a correction to one result recently obtained by Yao(Yao X Y. Some properties of g-frames in Hilbert C;-modules(in Chinese). Acta Math. Sinica, 2011, 54(1): 1–8.).
基金supported by Natural Science Foundation of Fujian Province of China (No.2009J01007)Education Commission Foundation of Fujian Province of China (No.JA08013)
文摘In this paper, we first determine the relations among the best bounds A and B of the g-frame, the g-frame operator S and the pre-frame operator Q and give a necessary and sufficient condition for a g-frame with bounds A and B in a complex Hilbert space. We also introduce the definition of a g-frame sequence and obtain a necessary and sufficient condition for a g-frame sequence with bounds A and B in a complex Hilbert space. Lastly, we consider the stability of a g-frame sequence for a complex Hilbert space under perturbation.
基金the Scientific Research Foundation for University of Shanxi Province (No.2007150)the Science Foundation of Yuncheng University (No.20060103)
文摘In this paper, we discuss the properties of g-frames and g-frame operators for Hilbert spaces by utilizing the method of operator theory. Furthermore, we study perturbations of g-frames, and obtain some meaningful results.
基金the Natural Science Foundation of Fujian Province,China (No.Z0511013)the Education Commission Foundation of Fujian Province,China (No.JB04038)
文摘In this paper, we introduce the pre-frame operator Q for the g-frame in a complex Hilbert space, which will play a key role in studying g-frames and g-Riesz bases etc. Using the pre-frame operator Q, we give some necessary and sufficient conditions for a g-Bessel sequence, a g-frame, and a g-Riesz basis in a complex Hilbert space, which have properties similar to those of the Bessel sequence, frame, and Riesz basis respectively. We also obtain the relation between a g-frame and a g-Riesz basis, and the relation of bounds between a g-frame and a g-Riesz basis. Lastly, we consider the stability of a g-frame or a g-Riesz basis for a Hilbert space under perturbation.
文摘In this paper, we give an operator parameterization for the set of dilations of a given pair of dual g-frames and the set of dilations of pairs of dual g-frames of a given g-frame. In particular,for the dilations of a given pair of dual g-frames, we introduce the concept of joint complementary g-frames and prove that the joint complementary g-frames of a pair of dual g-frames are unique in the sense of joint similarity, which then helps to obtain a sufficient condition such that the complementary g-frames of a g-frame are unique in the sense of similarity and show that the set of dilations of a given dual g-frame pair are parameterized by a set of invertible diagonal operators. For the dilations of pairs of dual g-frames, we prove that the set of dilations of pairs of dual g-frames are parameterized by a set of invertible upper triangular operators.