Hyaluronan and proteoglycan link protein 1(Hapln1)supports active cardiomyogenesis in zebrafish hearts,but its regulation in mammal cardiomyocytes is unclear.This study aimed to explore the potential regulation of Hap...Hyaluronan and proteoglycan link protein 1(Hapln1)supports active cardiomyogenesis in zebrafish hearts,but its regulation in mammal cardiomyocytes is unclear.This study aimed to explore the potential regulation of Hapln1 in the dedifferentiation and proliferation of cardiomyocytes and its therapeutic value in myocardial infarction with human induced pluripotent stem cell(hiPSC)-derived cardiomyocytes(CMs)and an adult mouse model of myocardial infarction.HiPSC-CMs and adult mice with myocardial infarction were used as in vitro and in vivo models,respectively.Previous single-cell RNA sequencing data were retrieved for bioinformatic exploration.The results showed that recombinant human Hapln1(rhHapln1)promotes the proliferation of hiPSC-CMs in a dose-dependent manner.As a physical binding protein of Hapln1,versican interacted with Nodal growth differentiation factor(NODAL)and growth differentiation factor 11(GDF11).GDF11,but not NODAL,was expressed by hiPSC-CMs.GDF11 expression was unaffected by rhHapln1 treatment.However,this molecule was required for rhHapln1-mediated activation of the transforming growth factor(TGF)-β/Drosophila mothers against decapentaplegic protein(SMAD)2/3 signaling in hiPSC-CMs,which stimulates cell dedifferentiation and proliferation.Recombinant mouse Hapln1(rmHapln1)could induce cardiac regeneration in the adult mouse model of myocardial infarction.In addition,rmHapln1 induced hiPSC-CM proliferation.In conclusion,Hapln1 can stimulate the dedifferentiation and proliferation of iPSC-derived cardiomyocytes by promoting versican-based GDF11 trapping and subsequent activation of the TGF-β/SMAD2/3 signaling pathway.Hapln1 might be an effective hiPSC-CM dedifferentiation and proliferation agent and a potential reagent for repairing damaged hearts.展开更多
Objective:Lung squamous cell carcinoma(LUSC)is associated with a low survival rate.Evidence suggests that bone morphogenetic proteins(BMPs)and their receptors(BMPRs)play crucial roles in tumorigenesis and progression....Objective:Lung squamous cell carcinoma(LUSC)is associated with a low survival rate.Evidence suggests that bone morphogenetic proteins(BMPs)and their receptors(BMPRs)play crucial roles in tumorigenesis and progression.However,a comprehensive analysis of their role in LUSC is lacking.Our study aimed to explore the relationship between BMPs/BMPRs expression levels and the tumorigenesis and prognosis of LUSC.Methods:The“R/Limma”package was utilized to analyze the differential expression characteristics of BMPs/BMPRs in LUSC,using data from TCGA,GTEx,and GEO databases.Concurrently,the“survminer”packages were employed to investigate their prognostic value and correlation with clinical features in LUSC.The core gene associated with LUSC progression was further explored through weighted gene correlation network analysis(WGCNA).LASSO analysis was conducted to construct a prognostic risk model for LUSC.Clinical specimens were examined by immunohistochemical analysis to confirm the diagnostic value in LUSC.Furthermore,based on the tumor immune estimation resource database and tumor-immune system interaction database,the role of the core gene in the tumor microenvironment of LUSC was explored.Results:GDF10 had a significant correlation only with the pathological T stage of LUSC,and the protein expression level of GDF10 decreased with the tumorigenesis of LUSC.A prognostic risk model was constructed with GDF10 as the core gene and 5 hub genes(HRASLS,HIST1H2BH,FLRT3,CHEK2,and ALPL)for LUSC.GDF10 showed a significant positive correlation with immune cell infiltration and immune checkpoint expression.Conclusion:GDF10 might serve as a diagnostic biomarker reflecting the tumorigenesis of LUSC and regulating the tumor immune microenvironment to guide more effective treatment for LUSC.展开更多
基金Shaanxi Province Natural Science Foundation,China(Grant No.:2021JM-568).
文摘Hyaluronan and proteoglycan link protein 1(Hapln1)supports active cardiomyogenesis in zebrafish hearts,but its regulation in mammal cardiomyocytes is unclear.This study aimed to explore the potential regulation of Hapln1 in the dedifferentiation and proliferation of cardiomyocytes and its therapeutic value in myocardial infarction with human induced pluripotent stem cell(hiPSC)-derived cardiomyocytes(CMs)and an adult mouse model of myocardial infarction.HiPSC-CMs and adult mice with myocardial infarction were used as in vitro and in vivo models,respectively.Previous single-cell RNA sequencing data were retrieved for bioinformatic exploration.The results showed that recombinant human Hapln1(rhHapln1)promotes the proliferation of hiPSC-CMs in a dose-dependent manner.As a physical binding protein of Hapln1,versican interacted with Nodal growth differentiation factor(NODAL)and growth differentiation factor 11(GDF11).GDF11,but not NODAL,was expressed by hiPSC-CMs.GDF11 expression was unaffected by rhHapln1 treatment.However,this molecule was required for rhHapln1-mediated activation of the transforming growth factor(TGF)-β/Drosophila mothers against decapentaplegic protein(SMAD)2/3 signaling in hiPSC-CMs,which stimulates cell dedifferentiation and proliferation.Recombinant mouse Hapln1(rmHapln1)could induce cardiac regeneration in the adult mouse model of myocardial infarction.In addition,rmHapln1 induced hiPSC-CM proliferation.In conclusion,Hapln1 can stimulate the dedifferentiation and proliferation of iPSC-derived cardiomyocytes by promoting versican-based GDF11 trapping and subsequent activation of the TGF-β/SMAD2/3 signaling pathway.Hapln1 might be an effective hiPSC-CM dedifferentiation and proliferation agent and a potential reagent for repairing damaged hearts.
文摘Objective:Lung squamous cell carcinoma(LUSC)is associated with a low survival rate.Evidence suggests that bone morphogenetic proteins(BMPs)and their receptors(BMPRs)play crucial roles in tumorigenesis and progression.However,a comprehensive analysis of their role in LUSC is lacking.Our study aimed to explore the relationship between BMPs/BMPRs expression levels and the tumorigenesis and prognosis of LUSC.Methods:The“R/Limma”package was utilized to analyze the differential expression characteristics of BMPs/BMPRs in LUSC,using data from TCGA,GTEx,and GEO databases.Concurrently,the“survminer”packages were employed to investigate their prognostic value and correlation with clinical features in LUSC.The core gene associated with LUSC progression was further explored through weighted gene correlation network analysis(WGCNA).LASSO analysis was conducted to construct a prognostic risk model for LUSC.Clinical specimens were examined by immunohistochemical analysis to confirm the diagnostic value in LUSC.Furthermore,based on the tumor immune estimation resource database and tumor-immune system interaction database,the role of the core gene in the tumor microenvironment of LUSC was explored.Results:GDF10 had a significant correlation only with the pathological T stage of LUSC,and the protein expression level of GDF10 decreased with the tumorigenesis of LUSC.A prognostic risk model was constructed with GDF10 as the core gene and 5 hub genes(HRASLS,HIST1H2BH,FLRT3,CHEK2,and ALPL)for LUSC.GDF10 showed a significant positive correlation with immune cell infiltration and immune checkpoint expression.Conclusion:GDF10 might serve as a diagnostic biomarker reflecting the tumorigenesis of LUSC and regulating the tumor immune microenvironment to guide more effective treatment for LUSC.