Floods are phenomenon with significant socio-economic implications mainly for human loss, agriculture, livestock, soil loss and land degradation, for which many researchers try to identify the most appropriate methodo...Floods are phenomenon with significant socio-economic implications mainly for human loss, agriculture, livestock, soil loss and land degradation, for which many researchers try to identify the most appropriate methodologies by analyzing their temporal and spatial development. This study therefore attempts to employ the GIS-based multi-criteria decision analysis and analytical hierarchy process techniques to derive the flood risks management on rice productivity in the Gishari Agricultural Marshland in Rwamagana district, Rwanda. Here, six influencing potential factors to flooding, including river slope, soil texture, Land Use Land Cover through Land Sat 8, rainfall, river distance and Digital Elevation Model are considered for the delineation of flood risk zones. Data acquisition like Landsat 8 images, DEM, land use land cover, slope, and soil class in the study area were considered. Results showed that if the DEM is outdated or inaccurate due to changes in the terrain, such as construction, excavation, or erosion, the predicted flood patterns might not reflect the actual water flow. This could result unexpected flood extents and depths, potentially inundating rice fields that were not previously at risk and this, expectedly explained that the increase 1 m in elevation would reduce the rice productivity by 0.17% due to unplanned flood risks in marshland. It was found that the change in rainfall distribution in Gishari agricultural marshland would also decrease the rice productivity by 0.0018%, which is a sign that rainfall is a major factor of flooding in rice scheme. Rainfall distribution plays a crucial role in flooding analysis and can directly impact rice productivity. Oppositely, another causal factor was Land Use Land Cover (LULC), where the Multivariate Logistic Regression Model Analysis findings showed that the increase of one unit in Land Use Land Cover would increase rice productivity by 0.17% of the total rice productivity from the Gishari Agricultural Marshland. Based on findings from these techniques, the Gishari Agricultural Marshlands having steeped land with grassland is classified into five classes of flooding namely very low, low, moderate, high, and very high which include 430%, 361%, 292%, 223%, and 154%. Government of Rwanda and other implementing agencies and major key actors have to contribute on soil and water conservation strategies to reduce the runoff and soil erosion as major contributors of flooding.展开更多
Hypsometric analysis is considered an effective tool for understanding the stages of geomorphic evolution and geological development of river catchment, and for the delineation of erosional proneness of watershed. In ...Hypsometric analysis is considered an effective tool for understanding the stages of geomorphic evolution and geological development of river catchment, and for the delineation of erosional proneness of watershed. In the present study, twenty eight fourth order sub-basins of W. Mujib-Wala (Southern Jordan) were selected, and hypsometric analysis was carried out using 30 m ASTER DEM. Elevation-relief ratio method was employed to calculate the hypsometric integral values within GIS environment. The hypsometric integral values range from 0.71 to 0.88, whereas, the hypsometric curves exhibit remarkably upward convex shapes which indicate that all sub-basins and the W. Mujib-Wala watershed are at the youth-age stage of geomorphic development. Thus, they are of high susceptibility to erosion, incised channel erosion and mass movement activity. Marginal differences exist in mass removal from the watershed and the 28 sub-basins are attributed to variation in tectonic effect, lithology and rejuvenation processes. The relation between basin area and hypsometric integral was examined using regression analysis. Results reveal that negative and weak relationships dominate, where r<sup>2</sup> ranges from 0.05 to 0.478 which confirm with other results reported elsewhere. Indirect assessment of erosion status based on hypsometric integral values was validated using estimated sediment yield information related to wadi Mujib and wadi Wala watersheds separately. The recorded sediment yields were in affirmation with high hypsometric integrals values, where higher values of hypsometric integrals and sediment yields occurred in the western part of the W. Mujib-Wala watershed. These findings would help in the construction of appropriate soil and water conservation measures across the watershed and its sub-basins to control soil erosion, to conserve water, and to reduce sediment discharge into the W. Mujib and W. Wala reservoirs.展开更多
Using GIS spatial statistical analysis method, with ArcGIS software as an analysis tool, taking the diseased maize in Hedong District of Linyi City as the study object, the distribution characteristic of the diseased ...Using GIS spatial statistical analysis method, with ArcGIS software as an analysis tool, taking the diseased maize in Hedong District of Linyi City as the study object, the distribution characteristic of the diseased crops this time in spatial location was analyzed. The results showed that the diseased crops mainly dis- tributed along with river tributaries and downstream of main rivers. The correlation between adjacent diseased plots was little, so the infection of pests and diseases were excluded, and the major reason of incidence might be river pollution.展开更多
文摘Floods are phenomenon with significant socio-economic implications mainly for human loss, agriculture, livestock, soil loss and land degradation, for which many researchers try to identify the most appropriate methodologies by analyzing their temporal and spatial development. This study therefore attempts to employ the GIS-based multi-criteria decision analysis and analytical hierarchy process techniques to derive the flood risks management on rice productivity in the Gishari Agricultural Marshland in Rwamagana district, Rwanda. Here, six influencing potential factors to flooding, including river slope, soil texture, Land Use Land Cover through Land Sat 8, rainfall, river distance and Digital Elevation Model are considered for the delineation of flood risk zones. Data acquisition like Landsat 8 images, DEM, land use land cover, slope, and soil class in the study area were considered. Results showed that if the DEM is outdated or inaccurate due to changes in the terrain, such as construction, excavation, or erosion, the predicted flood patterns might not reflect the actual water flow. This could result unexpected flood extents and depths, potentially inundating rice fields that were not previously at risk and this, expectedly explained that the increase 1 m in elevation would reduce the rice productivity by 0.17% due to unplanned flood risks in marshland. It was found that the change in rainfall distribution in Gishari agricultural marshland would also decrease the rice productivity by 0.0018%, which is a sign that rainfall is a major factor of flooding in rice scheme. Rainfall distribution plays a crucial role in flooding analysis and can directly impact rice productivity. Oppositely, another causal factor was Land Use Land Cover (LULC), where the Multivariate Logistic Regression Model Analysis findings showed that the increase of one unit in Land Use Land Cover would increase rice productivity by 0.17% of the total rice productivity from the Gishari Agricultural Marshland. Based on findings from these techniques, the Gishari Agricultural Marshlands having steeped land with grassland is classified into five classes of flooding namely very low, low, moderate, high, and very high which include 430%, 361%, 292%, 223%, and 154%. Government of Rwanda and other implementing agencies and major key actors have to contribute on soil and water conservation strategies to reduce the runoff and soil erosion as major contributors of flooding.
文摘Hypsometric analysis is considered an effective tool for understanding the stages of geomorphic evolution and geological development of river catchment, and for the delineation of erosional proneness of watershed. In the present study, twenty eight fourth order sub-basins of W. Mujib-Wala (Southern Jordan) were selected, and hypsometric analysis was carried out using 30 m ASTER DEM. Elevation-relief ratio method was employed to calculate the hypsometric integral values within GIS environment. The hypsometric integral values range from 0.71 to 0.88, whereas, the hypsometric curves exhibit remarkably upward convex shapes which indicate that all sub-basins and the W. Mujib-Wala watershed are at the youth-age stage of geomorphic development. Thus, they are of high susceptibility to erosion, incised channel erosion and mass movement activity. Marginal differences exist in mass removal from the watershed and the 28 sub-basins are attributed to variation in tectonic effect, lithology and rejuvenation processes. The relation between basin area and hypsometric integral was examined using regression analysis. Results reveal that negative and weak relationships dominate, where r<sup>2</sup> ranges from 0.05 to 0.478 which confirm with other results reported elsewhere. Indirect assessment of erosion status based on hypsometric integral values was validated using estimated sediment yield information related to wadi Mujib and wadi Wala watersheds separately. The recorded sediment yields were in affirmation with high hypsometric integrals values, where higher values of hypsometric integrals and sediment yields occurred in the western part of the W. Mujib-Wala watershed. These findings would help in the construction of appropriate soil and water conservation measures across the watershed and its sub-basins to control soil erosion, to conserve water, and to reduce sediment discharge into the W. Mujib and W. Wala reservoirs.
文摘Using GIS spatial statistical analysis method, with ArcGIS software as an analysis tool, taking the diseased maize in Hedong District of Linyi City as the study object, the distribution characteristic of the diseased crops this time in spatial location was analyzed. The results showed that the diseased crops mainly dis- tributed along with river tributaries and downstream of main rivers. The correlation between adjacent diseased plots was little, so the infection of pests and diseases were excluded, and the major reason of incidence might be river pollution.