期刊文献+
共找到1,114篇文章
< 1 2 56 >
每页显示 20 50 100
Continuous glucose monitoring metrics in pregnancy with type 1 diabetes mellitus
1
作者 Mohammad Sadiq Jeeyavudeen Mairi Crosby Joseph M Pappachan 《World Journal of Methodology》 2024年第1期6-17,共12页
Managing diabetes during pregnancy is challenging,given the significant risk it poses for both maternal and foetal health outcomes.While traditional methods involve capillary self-monitoring of blood glucose level mon... Managing diabetes during pregnancy is challenging,given the significant risk it poses for both maternal and foetal health outcomes.While traditional methods involve capillary self-monitoring of blood glucose level monitoring and periodic HbA1c tests,the advent of continuous glucose monitoring(CGM)systems has revolutionized the approach.These devices offer a safe and reliable means of tracking glucose levels in real-time,benefiting both women with diabetes during pregnancy and the healthcare providers.Moreover,CGM systems have shown a low rate of side effects and high feasibility when used in pregnancies complicated by diabetes,especially when paired with continuous subcutaneous insulin infusion pump as hybrid closed loop device.Such a combined approach has been demonstrated to improve overall blood sugar control,lessen the occurrence of preeclampsia and neonatal hypoglycaemia,and minimize the duration of neonatal intensive care unit stays.This paper aims to offer a comprehensive evaluation of CGM metrics specifically tailored for pregnancies impacted by type 1 diabetes mellitus. 展开更多
关键词 Type 1 diabetes mellitus Continuous glucose monitoring PREGNANCY Glycaemic control Continuous glucose monitoring system
下载PDF
Boosted Electrocatalytic Glucose Oxidation Reaction on Noble-Metal-Free MoO_(3)-Decorated Carbon Nanotubes
2
作者 Yu-Long Men Ning Dou +3 位作者 Yiyi Zhao Yan Huang Lei Zhang Peng Liu 《Transactions of Tianjin University》 EI CAS 2024年第1期63-73,共11页
Electrocatalytic glucose oxidation reaction(GOR)has attracted much attention owing to its crucial role in biofuel cell fabrication.Herein,we load MoO_(3)nanoparticles on carbon nanotubes(CNTs)and use a discharge proce... Electrocatalytic glucose oxidation reaction(GOR)has attracted much attention owing to its crucial role in biofuel cell fabrication.Herein,we load MoO_(3)nanoparticles on carbon nanotubes(CNTs)and use a discharge process to prepare a noblemetal-free MC-60 catalyst containing MoO_(3),Mo_(2)C,and a Mo_(2)C–MoO_(3)interface.In the GOR,MC-60 shows activity as high as 745μA/(mmol/L cm^(2)),considerably higher than those of the Pt/CNT(270μA/(mmol/L cm^(2)))and Au/CNT catalysts(110μA/(mmol/L cm^(2))).In the GOR,the response minimum on MC-60 is as low as 8μmol/L,with a steady-state response time of only 3 s.Moreover,MC-60 has superior stability and anti-interference ability to impurities in the GOR.The better performance of MC-60 in the GOR is attributed to the abundant Mo sites bonding to C and O atoms at the MoO_(3)–Mo_(2)C interface.These Mo sites create active sites for promoting glucose adsorption and oxidation,enhancing MC-60 performance in the GOR.Thus,these results help to fabricate more effi cient noble-metal-free catalysts for the fabrication of glucose-based biofuel cells. 展开更多
关键词 Interface eff ect ELECTROCATALYSIS Molybdenum oxide glucose Oxidation reaction
下载PDF
Microarrow sensor array with enhanced skin adhesion for transdermal continuous monitoring of glucose and reactive oxygen species
3
作者 Xinshuo Huang Baoming Liang +9 位作者 Shantao Zheng Feifei Wu Mengyi He Shuang Huang Jingbo Yang Qiangqiang Ouyang Fanmao Liu Jing Liu Hui-jiuan Chen Xi Xie 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第1期14-30,共17页
Conventional blood sampling for glucose detection is prone to cause pain and fails to continuously record glucose fluctuations in vivo.Continuous glucose monitoring based on implantable electrodes could induce pain an... Conventional blood sampling for glucose detection is prone to cause pain and fails to continuously record glucose fluctuations in vivo.Continuous glucose monitoring based on implantable electrodes could induce pain and potential tissue inflammation,and the presence of reactive oxygen species(ROS)due to inflammationmay affect glucose detection.Microneedle technology is less invasive,yet microneedle adhesion with skin tissue is limited.In this work,we developed a microarrow sensor array(MASA),which provided enhanced skin surface adhesion and enabled simultaneous detection of glucose and H_(2)O_(2)(representative of ROS)in interstitial fluid in vivo.The microarrows fabricated via laser micromachining were modified with functional coating and integrated into a patch of a three-dimensional(3D)microneedle array.Due to the arrow tip mechanically interlocking with the tissue,the microarrow array could better adhere to the skin surface after penetration into skin.The MASA was demonstrated to provide continuous in vivo monitoring of glucose and H_(2)O_(2) concentrations,with the detection of H_(2)O_(2) providing a valuable reference for assessing the inflammation state.Finally,the MASA was integrated into a monitoring system using custom circuitry.This work provides a promising tool for the stable and reliable monitoring of blood glucose in diabetic patients. 展开更多
关键词 Microarrow sensor array glucose sensing Reactive oxygen species sensing Integrated system Continuous monitoring
下载PDF
Voluntary wheel running ameliorated the deleterious effects of high-fat diet on glucose metabolism,gut microbiota and microbial-associated metabolites
4
作者 Ling Zhang Wenyu Zou +4 位作者 Yongyan Hu Honghua Wu Ying Gao Junqing Zhang Jia Zheng 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1672-1684,共13页
Exercise training is critical for the early prevention and treatment of obesity and diabetes mellitus.However,the mechanism with gut microbiota and fecal metabolites underlying the effects of voluntary wheel running o... Exercise training is critical for the early prevention and treatment of obesity and diabetes mellitus.However,the mechanism with gut microbiota and fecal metabolites underlying the effects of voluntary wheel running on high-fat diet induced abnormal glucose metabolism has not been fully elaborated.C57BL/6 male mice were randomly assigned to 4 groups according to diets(fed with normal chow diet or high-fat diet)and running paradigm(housed in static cage or with voluntary running wheel).An integrative 16S rDNA sequencing and metabolites profiling was synchronously performed to characterize the effects of voluntary wheel running on gut microbiota and metabolites.It showed that voluntary wheel running prevented the detrimental effects of high-fat feeding on glucose metabolism 16S rDNA sequencing showed remarkable changes in Rikenella and Marvinbryantia genera.Metabolic profiling indicated multiple altered metabolites,which were enriched in secondary bile acid biosynthesis signaling.In conclusion,our study indicated that voluntary wheel running significantly improved glucose metabolism and counteracted the deleterious effects of high-fat feeding on body weight and glucose intolerance.We further found that voluntary wheel running could integratively program gut microbiota composition and fecal metabolites changes,and may regulate muricholic acid metabolism and secondary bile acid biosynthesis in high-fat fed mice. 展开更多
关键词 High-fat diet Voluntary wheel running Gut microbiota Metabolomics glucose metabolism
下载PDF
Novel Sustainable Cellulose Acetate Based Biosensor for Glucose Detection
5
作者 M.F.Elkady E.M.El-Sayed +2 位作者 Mahmoud Samy Omneya A.Koriem H.Shokry Hassan 《Journal of Renewable Materials》 EI CAS 2024年第2期369-380,共12页
In this study,green zinc oxide(ZnO)/polypyrrole(Ppy)/cellulose acetate(CA)film has been synthesized via solvent casting.This film was used as supporting material for glucose oxidase(GOx)to sensitize a glucose biosenso... In this study,green zinc oxide(ZnO)/polypyrrole(Ppy)/cellulose acetate(CA)film has been synthesized via solvent casting.This film was used as supporting material for glucose oxidase(GOx)to sensitize a glucose biosensor.ZnO nanoparticles have been prepared via the green route using olive leaves extract as a reductant.ZnO/Ppy nanocomposite has been synthesized by a simple in-situ chemical oxidative polymerization of pyrrole(Py)monomer using ferric chloride(FeCl3)as an oxidizing agent.The produced materials and the composite films were characterized using X-ray diffraction analysis(XRD),scanning electron microscope(SEM),Fourier transform infrared(FTIR)and thermogravimetric analysis(TGA).Glucose oxidase was successfully immobilized on the surface of the prepared film and then ZnO/Ppy/CA/GOx composite was sputtered with platinum electrode for the current determination at different initial concentrations of glucose.Current measurements proved the suitability and the high sensitivity of the constructed biosensor for the detection of glucose levels in different samples.The performance of the prepared biosensor has been assessed by measuring and comparing glucose concentrations up to 800 ppm.The results affirmed the reliability of the developed biosensor towards real samples which suggests the wide-scale application of the proposed biosensor. 展开更多
关键词 Biosensors composite films glucose POLYPYRROLE green ZnO cellulose acetate
下载PDF
Effects of high glucose and severe hypoxia on the biological behavior of mesenchymal stem cells at various passages
6
作者 Fatimah Almahasneh Ejlal Abu-El-Rub +1 位作者 Ramada R Khasawneh Rawan Almazari 《World Journal of Stem Cells》 SCIE 2024年第4期434-443,共10页
BACKGROUND Mesenchymal stem cells(MSCs)have been extensively studied for therapeutic potential,due to their regenerative and immunomodulatory properties.Serial passage and stress factors may affect the biological char... BACKGROUND Mesenchymal stem cells(MSCs)have been extensively studied for therapeutic potential,due to their regenerative and immunomodulatory properties.Serial passage and stress factors may affect the biological characteristics of MSCs,but the details of these effects have not been recognized yet.AIM To investigate the effects of stress factors(high glucose and severe hypoxia)on the biological characteristics of MSCs at different passages,in order to optimize the therapeutic applications of MSCs.METHODS In this study,we investigated the impact of two stress conditions;severe hypoxia and high glucose on human adipose-tissue derived MSCs(hAD-MSCs)at passages 6(P6),P8,and P10.Proliferation,senescence and apoptosis were evaluated measuring WST-1,senescence-associated beta-galactosidase,and annexin V,respectively.RESULTS Cells at P6 showed decreased proliferation and increased apoptosis under conditions of high glucose and hypoxia compared to control,while the extent of senescence did not change significantly under stress conditions.At P8 hAD-MSCs cultured in stress conditions had a significant decrease in proliferation and apoptosis and a significant increase in senescence compared to counterpart cells at P6.Cells cultured in high glucose at P10 had lower proliferation and higher senescence than their counterparts in the previous passage,while no change in apoptosis was observed.On the other hand,MSCs cultured under hypoxia showed decreased senescence,increased apoptosis and no significant change in proliferation when compared to the same conditions at P8.CONCLUSION These results indicate that stress factors had distinct effects on the biological processes of MSCs at different passages,and suggest that senescence may be a protective mechanism for MSCs to survive under stress conditions at higher passage numbers. 展开更多
关键词 Mesenchymal stem cells High glucose HYPOXIA Stressful microenvironment Serial passage SENESCENCE APOPTOSIS
下载PDF
Value of glucose transport protein 1 expression in detecting lymph node metastasis in patients with colorectal cancer
7
作者 Hongsik Kim Song-Yi Choi +5 位作者 Tae-Young Heo Kyeong-Rok Kim Jisun Lee Min Young Yoo Taek-Gu Lee Joung-Ho Han 《World Journal of Clinical Cases》 SCIE 2024年第5期931-941,共11页
BACKGROUND There are limited data on the use of glucose transport protein 1(GLUT-1)expre-ssion as a biomarker for predicting lymph node metastasis in patients with colorectal cancer.GLUT-1 and GLUT-3,hexokinase(HK)-II... BACKGROUND There are limited data on the use of glucose transport protein 1(GLUT-1)expre-ssion as a biomarker for predicting lymph node metastasis in patients with colorectal cancer.GLUT-1 and GLUT-3,hexokinase(HK)-II,and hypoxia-induced factor(HIF)-1 expressions may be useful biomarkers for detecting primary tumors and lymph node metastasis when combined with fluorodeoxyglucose(FDG)uptake on positron emission tomography/computed tomography(PET/CT).AIM To evaluate GLUT-1,GLUT-3,HK-II,and HIF-1 expressions as biomarkers for detecting primary tumors and lymph node metastasis with 18F-FDG-PET/CT.METHODS This retrospective study included 169 patients with colorectal cancer who underwent colectomy and preoperative 18F-FDG-PET/CT at Chungbuk National University Hospital between January 2009 and May 2012.Two tissue cores from the central and peripheral areas of the tumors were obtained and were examined by a dedicated pathologist,and the expressions of GLUT-1,GLUT-3,HK-II,and HIF-1 were determined using immunohisto-chemical staining.We analyzed the correlations among their expressions,various clinicopathological factors,and the maximum standardized uptake value(SUVmax)of PET/CT.RESULTS GLUT-1 was found at the center or periphery of the tumors in 109(64.5%)of the 169 patients.GLUT-1 positivity was significantly correlated with the SUVmax of the primary tumor and lymph nodes,regardless of the biopsy site(tumor center,P<0.001 and P=0.012;tumor periphery,P=0.030 and P=0.010,respectively).GLUT-1 positivity and negativity were associated with higher and lower sensitivities of PET/CT,respectively,for the detection of lymph node metastasis,regardless of the biopsy site.GLUT3,HK-II,and HIF-1 expressions were not significantly correlated with the SUVmax of the primary tumor and lymph nodes.CONCLUSION GLUT-1 expression was significantly correlated with the SUVmax of 18F-FDG-PET/CT for primary tumors and lymph nodes.Clinicians should consider GLUT-1 expression in preoperative endoscopic biopsy in interpreting PET/CT findings. 展开更多
关键词 18F-FDG-PET-CT BIOMARKER Colorectal neoplasms glucose transporter type 1 Lymph node
下载PDF
Assessment of the triglyceride glucose index in adult patients with chronic diarrhea and constipation
8
作者 Jing-Yi Zhu Mu-Yun Liu Chang Sun 《World Journal of Clinical Cases》 SCIE 2024年第6期1094-1103,共10页
BACKGROUND Accumulating evidence suggests that the gut microbiome is involved in the pathogenesis of insulin resistance(IR).However,the link between two of the most prevalent bowel disorders,chronic diarrhea and const... BACKGROUND Accumulating evidence suggests that the gut microbiome is involved in the pathogenesis of insulin resistance(IR).However,the link between two of the most prevalent bowel disorders,chronic diarrhea and constipation,and the triglyceride glucose(TyG)index,a marker of IR,has not yet been investigated.AIM To investigate the potential association between TyG and the incidence of chronic diarrhea and constipation.METHODS This cross-sectional study enrolled 2400 participants from the National Health and Nutrition Examination Survey database from 2009-2010.TyG was used as an exposure variable,with chronic diarrhea and constipation as determined by the Bristol Stool Form Scale used as the outcome variables.A demographic investigation based on TyG quartile subgroups was performed.The application of multivariate logistic regression models and weighted generalized additive models revealed potential correlations between TyG,chronic diarrhea,and constipation.Subgroup analyses were performed to examine the stability of any potential associations.RESULTS In the chosen sample,chronic diarrhea had a prevalence of 8.00%,while chronic constipation had a prevalence of 8.04%.In multiple logistic regression,a more prominent positive association was found between TyG and chronic diarrhea,particularly in model 1(OR=1.45;95%CI:1.17-1.79,P=0.0007)and model 2(OR=1.40;95%CI:1.12-1.76,P=0.0033).No definite association was observed between the TyG levels and chronic constipation.The weighted generalized additive model findings suggested a more substantial positive association with chronic diarrhea when TyG was less than 9.63(OR=1.89;95%CI:1.05-3.41,P=0.0344),and another positive association with chronic constipation when it was greater than 8.2(OR=1.74;95%CI:1.02-2.95,P=0.0415).The results of the subgroup analyses further strengthen the extrapolation of these results to a wide range of populations.CONCLUSION Higher TyG levels were positively associated with abnormal bowel health. 展开更多
关键词 Triglyceride glucose index National Health and Nutrition Examination Survey Chronic diarrhea Chronic constipation Cross-sectional study Bowel health
下载PDF
Comparative efficacy of sodium glucose cotransporter-2 inhibitors in the management of type 2 diabetes mellitus:A real-world experience
9
作者 Lubna Islam Dhanya Jose +3 位作者 Mohammed Alkhalifah Dania Blaibel Vishnu Chandrabalan Joseph M Pappachan 《World Journal of Diabetes》 SCIE 2024年第3期463-474,共12页
BACKGROUND Sodium glucose cotransporter-2 inhibitors(SGLT-2i)are a class of drugs with modest antidiabetic efficacy,weight loss effect,and cardiovascular benefits as proven by multiple randomised controlled trials(RCT... BACKGROUND Sodium glucose cotransporter-2 inhibitors(SGLT-2i)are a class of drugs with modest antidiabetic efficacy,weight loss effect,and cardiovascular benefits as proven by multiple randomised controlled trials(RCTs).However,real-world data on the comparative efficacy and safety of individual SGLT-2i medications is sparse.AIM To study the comparative efficacy and safety of SGLT-2i using real-world clinical data.METHODS We evaluated the comparative efficacy data of 3 SGLT-2i drugs(dapagliflozin,canagliflozin,and empagliflozin)used for treating patients with type 2 diabetes mellitus.Data on the reduction of glycated hemoglobin(HbA1c),body weight,blood pressure(BP),urine albumin creatinine ratio(ACR),and adverse effects were recorded retrospectively.RESULTS Data from 467 patients with a median age of 64(14.8)years,294(62.96%)males and 375(80.5%)Caucasians were analysed.Median diabetes duration was 16.0(9.0)years,and the duration of SGLT-2i use was 3.6(2.1)years.SGLT-2i molecules used were dapagliflozin 10 mg(n=227;48.6%),canagliflozin 300 mg(n=160;34.3%),and empagliflozin 25 mg(n=80;17.1).Baseline median(interquartile range)HbA1c in mmol/mol were:dapagliflozin-78.0(25.3),canagliflozin-80.0(25.5),and empagliflozin-75.0(23.5)respectively.The respective median HbA1c reduction at 12 months and the latest review(just prior to the study)were:66.5(22.8)&69.0(24.0),67.0(16.3)&66.0(28.0),and 67.0(22.5)&66.5(25.8)respectively(P<0.001 for all comparisons from baseline).Significant improvements in body weight(in kilograms)from baseline to study end were noticed with dapagliflozin-101(29.5)to 92.2(25.6),and canagliflozin 100(28.3)to 95.3(27.5)only.Significant reductions in median systolic and diastolic BP,from 144(21)mmHg to 139(23)mmHg;(P=0.015),and from 82(16)mmHg to 78(19)mmHg;(P<0.001)respectively were also observed.A significant reduction of microalbuminuria was observed with canagliflozin only[ACR 14.6(42.6)at baseline to 8.9(23.7)at the study end;P=0.043].Adverse effects of SGLT-2i were as follows:genital thrush and urinary infection-20(8.8%)&17(7.5%)with dapagliflozin;9(5.6%)&5(3.13%)with canagliflozin;and 4(5%)&4(5%)with empagliflozin.Diabetic ketoacidosis was observed in 4(1.8%)with dapagliflozin and 1(0.63%)with canagliflozin.CONCLUSION Treatment of patients with SGLT-2i is associated with statistically significant reductions in HbA1c,body weight,and better than those reported in RCTs,with low side effect profiles.A review of large-scale real-world data is needed to inform better clinical practice decision making. 展开更多
关键词 Sodium glucose cotransporter-2 inhibitors Empagliflozin Canagliflozin DAPAGLIFLOZIN Type 2 diabetes mellitus Cardiovascular disease Albumin creatinine ratio DIABESITY
下载PDF
Synaptotagmins family affect glucose transport in retinal pigment epithelial cells through their ubiquitination-mediated degradation and glucose transporter-1 regulation
10
作者 Hong Xu Li-Bo Zhang +6 位作者 Yi-Yi Luo Ling Wang Ye-Pin Zhang Pei-Qi Chen Xue-Ying Ba Jian Han Heng Luo 《World Journal of Diabetes》 SCIE 2024年第5期958-976,共19页
BACKGROUND Synaptotagmins(SYTs)are a family of 17 membrane transporters that function as calcium ion sensors during the release of Ca2+-dependent neurotransmitters and hormones.However,few studies have reported whethe... BACKGROUND Synaptotagmins(SYTs)are a family of 17 membrane transporters that function as calcium ion sensors during the release of Ca2+-dependent neurotransmitters and hormones.However,few studies have reported whether members of the SYT family play a role in glucose uptake in diabetic retinopathy(DR)through Ca2+/glucose transporter-1(GLUT1)and the possible regulatory mechanism of SYTs.AIM To elucidate the role of the SYT family in the regulation of glucose transport in retinal pigment epithelial cells and explore its potential as a therapeutic target for the clinical management of DR.METHODS DR was induced by streptozotocin in C57BL/6J mice and by high glucose medium in human retinal pigment epithelial cells(ARPE-19).Bioinformatics analysis,reverse transcriptase-polymerase chain reaction,Western blot,flow cytometry,ELISA,HE staining,and TUNEL staining were used for analysis.RESULTS Six differentially expressed proteins(SYT2,SYT3,SYT4,SYT7,SYT11,and SYT13)were found between the DR and control groups,and SYT4 was highly expressed.Hyperglycemia induces SYT4 overexpression,manipulates Ca2+influx to induce GLUT1 fusion with the plasma membrane,promotes abnormal expression of the glucose transporter GLUT1 and excessive glucose uptake,induces ARPE-19 cell apoptosis,and promotes DR progression.Parkin deficiency inhibits the proteasomal degradation of SYT4 in DR,resulting in SYT4 accumulation and enhanced GLUT1 fusion with the plasma membrane,and these effects were blocked by oe-Parkin treatment.Moreover,dysregulation of the myelin transcription factor 1(Myt1)-induced transcription of SYT4 in DR further activated the SYT4-mediated stimulus-secretion coupling process,and this process was inhibited in the oe-MYT1-treated group.CONCLUSION Our study reveals the key role of SYT4 in regulating glucose transport in retinal pigment epithelial cells during the pathogenesis of DR and the underlying mechanism and suggests potential therapeutic targets for clinical DR. 展开更多
关键词 Diabetic retinopathy glucose transporter-1 Synaptotagmin 4 PARKIN Myelin transcription factor 1
下载PDF
Periodic Addition of Glucose Suppressed Cyanobacterial Abundance in Additive Lake Water Samples during the Entire Bloom Season
11
作者 David Linz Ian Struewing +6 位作者 Nathan Sienkiewicz Alan David Steinman Charlyn Gwen Partridge Kyle McIntosh Joel Allen Jingrang Lu Stephen Vesper 《Journal of Water Resource and Protection》 CAS 2024年第2期140-155,共16页
Previously, we showed that prophylactic addition of glucose to Harsha Lake water samples could inhibit cyanobacteria growth, at least for a short period of time. The current study tested cyanobacterial control with gl... Previously, we showed that prophylactic addition of glucose to Harsha Lake water samples could inhibit cyanobacteria growth, at least for a short period of time. The current study tested cyanobacterial control with glucose for the entire Harsha Lake bloom season. Water samples (1000 ml) were collected weekly from Harsha Lake during the algal-bloom season starting June 9 and lasting until August 24, 2022. To each of two 7-liter polypropylene containers, 500 ml of Harsha Lake water was added, and the containers were placed in a controlled environment chamber. To one container labeled “Treated,” 0.15 g of glucose was added, and nothing was added to the container labeled “Control.” After that, three 25 ml samples from each container were collected and used for 16S rRNA gene sequencing each week. Then 1000 ml of Harsha Lake water was newly collected each week, with 500 ml added to each container, along with the addition of 0.15 g glucose to the “Treated” container. Sequencing data were used to examine differences in the composition of bacterial communities between Treated and Control containers. Treatment with glucose altered the microbial communities by 1) reducing taxonomic diversity, 2) largely eliminating cyanobacterial taxa, and 3) increasing the relative abundance of subsets of non-cyanobacterial taxa (such as Proteobacteria and Actinobacteriota). These effects were observed across time despite weekly inputs derived directly from Lake water. The addition of glucose to a container receiving weekly additions of Lake water suppressed the cyanobacterial populations during the entire summer bloom season. The glucose appears to stimulate the diversity of certain bacterial taxa at the expense of the cyanobacteria. 展开更多
关键词 glucose CYANOBACTERIA 16S Amplicon Sequencing Microbial Community
下载PDF
Glucose metabolism profile recorded by flash glucose monitoring system in patients with hypopituitarism during prednisone replacement
12
作者 Min-Min Han Jia-Xin Zhang +10 位作者 Zi-Ang Liu Lin-Xin Xu Tao Bai Chen-Yu Xiang Jin Zhang Dong-Qing Lv Yan-Fang Liu Yan-Hong Wei Bao-Feng Wu Yi Zhang Yun-Feng Liu 《World Journal of Diabetes》 SCIE 2023年第7期1112-1125,共14页
BACKGROUND Commonly used glucocorticoids replacement regimens in patients with hypopituitarism have difficulty mimicking physiological cortisol rhythms and are usually accompanied by risks of over-treatment,with adver... BACKGROUND Commonly used glucocorticoids replacement regimens in patients with hypopituitarism have difficulty mimicking physiological cortisol rhythms and are usually accompanied by risks of over-treatment,with adverse effects on glucose metabolism.Disorders associated with glucose metabolism are established risk factors of cardiovascular events,one of the life-threatening ramifications.AIM To investigate the glycometabolism profile in patients with hypopituitarism receiving prednisone(Pred)replacement,and to clarify the impacts of different Pred doses on glycometabolism and consequent adverse cardiovascular outcomes.METHODS Twenty patients with hypopituitarism receiving Pred replacement[patient group(PG)]and 20 normal controls(NCs)were recruited.A flash glucose monitoring system was used to record continuous glucose levels during the day,which provided information on glucose-target-rate,glucose variability(GV),period glucose level,and hypoglycemia occurrence at certain periods.Islet β-cell function was also assessed.Based on the administered Pred dose per day,the PG was then regrouped into Pred>5 mg/d and Pred≤5 mg/d subgroups.Comparative analysis was carried out between the PG and NCs.RESULTS Significantly altered glucose metabolism profiles were identified in the PG.This includes significant reductions in glucose-target-rate and nocturnal glucose level,along with elevations in GV,hypoglycemia occurrence and postprandial glucose level,when compared with those in NCs.Subgroup analysis indicated more significant glucose metabolism impairment in the Pred>5 mg/d group,including significantly decreased glucose-target-rate and nocturnal glucose level,along with increased GV,hypoglycemia occurrence,and postprandial glucose level.With regard to islet β-cell function,PG showed significant difference in homeostasis model assessment(HOMA)-β compared with that of NCs;a notable difference in HOMA-βwas identified in Pred>5 mg/d group when compared with those of NCs;as for Pred≤5 mg/d group,significant differences were found in HOMA-β,and fasting glucose/insulin ratio when compared with NCs.CONCLUSION Our results demonstrated that Pred replacement disrupted glycometabolic homeostasis in patients with hypopituitarism.A Pred dose of>5 mg/d seemed to cause more adverse effects on glycometabolism than a dose of≤5 mg/d.Comprehensive and accurate evaluation is necessary to consider a suitable Pred replacement regimen,wherein,flash glucose monitoring system is a kind of promising and reliable assessment device.The present data allows us to thoroughly examine our modern treatment standards,especially in difficult cases such as hormonal replacement mimicking delicate natural cycles,in conditions such as diabetes mellitus that are rapidly growing in worldwide prevalence. 展开更多
关键词 HYPOPITUITARISM PREDNISONE Flash glucose monitoring system glucose-target-rate glucose variability Period glucose level
下载PDF
A Study on Near-Infrared Non-Invasive Blood Glucose Concentration Regression Prediction Based on PSO-MKL-SVR
13
作者 Xinjia Yang Linhua Zhou 《Journal of Applied Mathematics and Physics》 2024年第1期1-11,共11页
To improve the accuracy of predicting non-invasive blood glucose concentration in the near-infrared spectrum, we utilized the Particle Swarm Optimization (PSO) algorithm to optimize hyperparameters for the Multi-Kerne... To improve the accuracy of predicting non-invasive blood glucose concentration in the near-infrared spectrum, we utilized the Particle Swarm Optimization (PSO) algorithm to optimize hyperparameters for the Multi-Kernel Learning Support Vector Machine (MKL-SVR). With these optimized hyperparameters, we established a non-invasive blood glucose regression model, referred to as the PSO-MKL-SVR model. Subsequently, we conducted a comparative analysis between the PSO-MKL-SVR model and the PSO-SVR model. In a dataset comprising ten volunteers, the PSO-MKL-SVR model exhibited significant precision improvements, including a 16.03% reduction in Mean Square Error and a 0.29% increase in the Squared Correlation Coefficient. Moreover, there was a 0.14% higher probability of the Clark’s Error Grid Analysis falling within Zone A. Additionally, the PSO-MKL-SVR model demonstrated a faster operational speed compared to the PSO-SVR model. 展开更多
关键词 SVM MKL PSO Non-Invasive Blood glucose
下载PDF
Altered O-GlcNAcylation and mitochondrial dysfunction,a molecular link between brain glucose dysregulation and sporadic Alzheimer's disease 被引量:3
14
作者 Chia-Wei Huang Nicholas C.Rust +1 位作者 Hsueh-Fu Wu Gerald W.Hart 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第4期779-783,共5页
Alzheimer’s disease is a neurodegenerative disease that affected over 6.5 million people in the United States in 2021,with this number expected to double in the next 40 years without any sort of treatment.Due to its ... Alzheimer’s disease is a neurodegenerative disease that affected over 6.5 million people in the United States in 2021,with this number expected to double in the next 40 years without any sort of treatment.Due to its heterogeneity and complexity,the etiology of Alzheimer’s disease,especially sporadic Alzheimer’s disease,remains largely unclear.Compelling evidence suggests that brain glucose hypometabolism,preceding Alzheimer’s disease hallmarks,is involved in the pathogenesis of Alzheimer’s disease.Herein,we discuss the potential causes of reduced glucose uptake and the mechanisms underlying glucose hypometabolism and Alzheimer’s disease pathology.Specifically,decreased O-Glc NAcylation levels by glucose deficiency alter mitochondrial functions and together contribute to Alzheimer’s disease pathogenesis.One major problem with Alzheimer’s disease research is that the disease progresses for several years before the onset of any symptoms,suggesting the critical need for appropriate models to study the molecular changes in the early phase of Alzheimer’s disease progression.Therefore,this review also discusses current available sporadic Alzheimer’s disease models induced by metabolic abnormalities and provides novel directions for establishing a human neuronal sporadic Alzheimer’s disease model that better represents human sporadic Alzheimer’s disease as a metabolic disease. 展开更多
关键词 Alzheimer’s disease amyloid beta BRAIN glucose deficiency glucose uptake HYPOMETABOLISM mitochondrial dysfunction neurodegenerative disease neurons O-GlcNAc Tau
下载PDF
Icariin ameliorates memory deficits through regulating brain insulin signaling and glucose transporters in 3×Tg-AD mice 被引量:1
15
作者 Fei Yan Ju Liu +8 位作者 Mei-Xiang Chen Ying Zhang Sheng-Jiao Wei Hai Jin Jing Nie Xiao-Long Fu Jing-Shan Shi Shao-Yu Zhou Feng Jin 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第1期183-188,共6页
Icariin,a major prenylated flavonoid found in Epimedium spp.,is a bioactive constituent of Herba Epimedii and has been shown to exert neuroprotective effects in experimental models of Alzheimer’s disease.In this stud... Icariin,a major prenylated flavonoid found in Epimedium spp.,is a bioactive constituent of Herba Epimedii and has been shown to exert neuroprotective effects in experimental models of Alzheimer’s disease.In this study,we investigated the neuroprotective mechanism of icariin in an APP/PS1/Tau triple-transgenic mouse model of Alzheimer’s disease.We performed behavioral tests,pathological examination,and western blot assay,and found that memory deficits of the model mice were obviously improved,neuronal and synaptic damage in the cerebral cortex was substantially mitigated,and amyloid-βaccumulation and tau hyperphosphorylation were considerably reduced after 5 months of intragastric administration of icariin at a dose of 60 mg/kg body weight per day.Furthermore,deficits of proteins in the insulin signaling pathway and their phosphorylation levels were significantly reversed,including the insulin receptor,insulin receptor substrate 1,phosphatidylinositol-3-kinase,protein kinase B,and glycogen synthase kinase 3β,and the levels of glucose transporter 1 and 3 were markedly increased.These findings suggest that icariin can improve learning and memory impairments in the mouse model of Alzheimer’s disease by regulating brain insulin signaling and glucose transporters,which lays the foundation for potential clinical application of icariin in the prevention and treatment of Alzheimer’s disease. 展开更多
关键词 Alzheimer’s disease AMYLOID-BETA brain insulin signaling glucose transporter glucose uptake ICARIIN memory neurodegenerative disease tau hyperphosphorylation triple-transgenic Alzheimer’s disease mice
下载PDF
What,why and how to monitor blood glucose in critically ill patients
16
作者 Deven Juneja Desh Deepak Prashant Nasa 《World Journal of Diabetes》 SCIE 2023年第5期528-538,共11页
Critically ill patients are prone to high glycemic variations irrespective of their diabetes status.This mandates frequent blood glucose(BG)monitoring and regulation of insulin therapy.Even though the most commonly em... Critically ill patients are prone to high glycemic variations irrespective of their diabetes status.This mandates frequent blood glucose(BG)monitoring and regulation of insulin therapy.Even though the most commonly employed capillary BG monitoring is convenient and rapid,it is inaccurate and prone to high bias,overestimating BG levels in critically ill patients.The targets for BG levels have also varied in the past few years ranging from tight glucose control to a more liberal approach.Each of these has its own fallacies,while tight control increases risk of hypoglycemia,liberal BG targets make the patients prone to hyperglycemia.Moreover,the recent evidence suggests that BG indices,such as glycemic variability and time in target range,may also affect patient outcomes.In this review,we highlight the nuances associated with BG monitoring,including the various indices required to be monitored,BG targets and recent advances in BG monitoring in critically ill patients. 展开更多
关键词 Blood glucose Continuous glucose monitoring Critical care Glycaemic indices HYPOGLYCAEMIA Intensive care unit
下载PDF
Sodium-glucose cotransporter-2 inhibitor use in kidney transplant recipients
17
作者 Pavithra Ramakrishnan Neetika Garg +2 位作者 Samantha Pabich Didier A Mandelbrot Kurtis J Swanson 《World Journal of Transplantation》 2023年第5期239-249,共11页
Sodium-glucose cotransporter-2 inhibitors(SGLT2i)are novel oral hypoglycemic agents garnering much attention for their substantial benefits.These recent data have positioned SGLT2i at the forefront of diabetic chronic... Sodium-glucose cotransporter-2 inhibitors(SGLT2i)are novel oral hypoglycemic agents garnering much attention for their substantial benefits.These recent data have positioned SGLT2i at the forefront of diabetic chronic kidney disease(CKD)and heart failure management.SGLT2i use post-kidney transplant is an emerging area of research.Highlights from this mini review include the following:Empagliflozin is the most prescribed SGLT2i in kidney transplant recipients(KTRs),median time from transplant to initiation was 3 years(range:0.88-9.6 years).Median baseline estimated glomerular filtration rate(eGFR)was 66.7 mL/min/1.73 m2(range:50.4-75.8).Median glycohemoglobin(HgbA1c)at initiation was 7.7%(range:6.9-9.3).SGLT2i were demonstrated to be effective short-term impacting HgbA1c,eGFR,hemoglobin/hematocrit,serum uric acid,and serum magnesium levels.They are shown to be safe in KTRs with low rates of infections,hypoglycemia,euglycemic diabetic ketoacidosis,and stable tacrolimus levels.More data is needed to demonstrate long-term outcomes.SGLT2i appear to be safe,effective medications for select KTRs.Our present literature,though limited,is founded on precedent robust research in CKD patients with diabetes.Concurrent research/utilization of SGLT2i is vital to not only identify long-term patient,graft and cardiovascular outcomes of these agents,but also to augment management in KTRs. 展开更多
关键词 Sodium glucose cotransporter-2 Sodium glucose cotransporter-2 inhibitor Kidney transplantation DIABETES Post-transplant diabetes mellitus New onset diabetes after transplant
下载PDF
Integration of root architecture,root nitrogen metabolism,and photosynthesis of‘Hanfu’apple trees under the cross-talk between glucose and IAA 被引量:2
18
作者 Bianbin Qi Xin Zhang +2 位作者 Zhiquan Mao Sijun Qin Deguo Lv 《Horticultural Plant Journal》 SCIE CAS CSCD 2023年第4期631-644,共14页
Sugars and auxin have important effects on almost all phases of plant life cycle,which are so fundamental to plants and regulate similar processes.However,little is known about the effect of cross-talk between glucose... Sugars and auxin have important effects on almost all phases of plant life cycle,which are so fundamental to plants and regulate similar processes.However,little is known about the effect of cross-talk between glucose and indole-3-acetic acid(IAA)on growth and development of apple trees.To examine the potential roles of glucose and IAA in root architecture,root nitrogen(N)metabolism and photosynthetic capacity in‘Hanfu’(Malus domestica),a total of five treatments was established:single application of glucose,IAA,and auxin polar transport inhibitor(2,3,5-triiodobenzoic acid,TIBA),combined application of glucose with TIBA and that of glucose with IAA.The combined application of glucose with IAA improved root topology system and endogenous IAA content by altering the mRNA levels of several genes involved in root growth,auxin transport and biosynthesis.Moreover,the increased N metabolism enzyme activities and levels of genes expression related to N in roots may suggest higher rates of transformation of nitrate(NO3--N)into amino acids application of glucose and IAA.Contrarily,single application of TIBA decreased the expression levels of auxin transport gene,hindered root growth and decreased endogenous IAA content.Glucose combined with TIBA application effectively attenuated TIBA-induced reductions in root topology structure,photosynthesis and N metabolism activity,and mRNA expression levels involved in auxin biosynthesis and transport.Taken together,glucose application probably changes the expression level of auxin synthesis and transport genes,and induce the allocation of endogenous IAA in root,and thus improves root architecture and N metabolism of root in soil with deficit carbon. 展开更多
关键词 MALUS Cross-talk between glucose and IAA Root morphology Nitrogen metabolism Photosynthesis
下载PDF
Vitamin B3 inhibits apoptosis and promotes autophagy of isletβcells under high glucose stress 被引量:1
19
作者 YU ZHANG XI’AN ZHOU +3 位作者 CHUNYAN ZHANG DENGNI LAI DONGBO LIU YANYANG WU 《BIOCELL》 SCIE 2023年第4期859-868,共10页
Background:Hyperglycemia is a typical symptom of diabetes.High glucose induces apoptosis of isletβcells.While autophagy functions in cytoprotection and autophagic cell death.The interaction between autophagy and apop... Background:Hyperglycemia is a typical symptom of diabetes.High glucose induces apoptosis of isletβcells.While autophagy functions in cytoprotection and autophagic cell death.The interaction between autophagy and apoptosis is important in the modulation of the function of isletβcells.Vitamin B3 can induce autophagy and inhibit isletβapoptosis.Method:The mechanism of vitamin B3-mediated protective effect on the function of isletβcells was explored by the method of western blot,immunofluorescence and flow cytometry.Results:In the present study,high glucose stress increased the apoptosis rate,while vitamin B3 reduced the apoptosis rate.The effect of vitamin B3 on autophagy flux under normal and high glucose stress was also investigated.Vitamin B3 increased the number of autophagosomes and increased the light chain(LC)3-II/LC3-I ratio.In contrast,vitamin B3 decreased sequestosome 1(SQSTM1)/p62 protein expression and inhibited the phosphorylation of mammalian ribosomal protein S6 kinaseβ-1(p70S6K/S6K1),which was a substrate of mammalian target of rapamycin(mTOR)under normal and high glucose stress.To further verify the protective effect of vitamin B3 on apoptosis,we treated isletβcell RIN-m5F with autophagy inhibitor 3-methyladenine(3-MA).Vitamin B3 decreased the apoptosis rate under high glucose stress,while the inhibition of apoptosis by vitamin B3 was blocked after adding 3-MA.Conclusion:Our data suggested that vitamin B3 reduced the apoptosis rate ofβcells,possibly through inducing autophagy under high glucose stress. 展开更多
关键词 Vitamin B3 High glucose AUTOPHAGY APOPTOSIS
下载PDF
Role of apigenin in high glucose-induced retinal microvascular endothelial cell dysfunction via regulating NOX4/p38 MAPK pathway in vitro 被引量:1
20
作者 Li-Li Liu Zhi-Yi Zhao 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2023年第4期514-522,共9页
AIM:To investigate the retinoprotective role of Apigenin(Api)against high glucose(HG)-induced human retinal microvascular endothelial cells(HRMECs),and to explore its regulatory mechanism.METHODS:HRMECs were stimulate... AIM:To investigate the retinoprotective role of Apigenin(Api)against high glucose(HG)-induced human retinal microvascular endothelial cells(HRMECs),and to explore its regulatory mechanism.METHODS:HRMECs were stimulated by HG for 48h to establish the in vitro cell model.Different concentrations of Api(2.5,5,and 10μmol/L)were applied for treatment.Cell counting kit-8(CCK-8),Transwell,and tube formation assays were performed to examine the effects of Api on the viability,migration,and angiogenesis in HG-induced HRMECs.Vascular permeability was evaluated by Evans blue dye.The inflammatory cytokines and oxidative stress-related factors were measured using their commercial kits.Protein expression of nicotinamide adenine dinucleotide phosphate(NADPH)oxidase 4(NOX4)and p38 mitogen-activated protein kinase(MAPK)was measured by Western blot.RESULTS:Api prevented HG-induced HRMECs viability,migration,angiogenesis,and vascular permeability in a concentration-dependent manner.Meanwhile,Api also concentration-dependently inhibited inflammation and oxidative stress in HRMECs exposed to HG.In addition,HG caused an elevated expression of NOX4,which was retarded by Api treatment.HG stimulation facilitated the activation of p38 MAPK signaling in HRMECs,and Api could weaken this activation partly via downregulating NOX4 expression.Furthermore,overexpression of NOX4 or activation of p38 MAPK signaling greatly weakened the protective role of Api against HG-stimulated HRMECs.CONCLUSION:Api might exert a beneficial role in HGstimulated HRMECs through regulating NOX4/p38 MAPK pathway. 展开更多
关键词 APIGENIN retinal microvascular endothelial cell glucose NOX4 p38 MAPK
原文传递
上一页 1 2 56 下一页 到第
使用帮助 返回顶部