期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于GMDH神经网络的超超临界机组过热蒸汽温度预测模型及仿真研究 被引量:4
1
作者 陈小强 许仙珍 +2 位作者 蔡璐璐 张江丰 楼可炜 《热力发电》 CAS 北大核心 2014年第6期102-107,共6页
由于超超临界1 000MW机组过热蒸汽温度控制对象具有大滞后、非线性、动态参数随工况变化大等特点,使得传统的控制方法难以适应过热蒸汽温度的控制,出现过热蒸汽温度波动大,甚至超温等问题。对此,采用数据处理群集方法(GMDH)神经网络建... 由于超超临界1 000MW机组过热蒸汽温度控制对象具有大滞后、非线性、动态参数随工况变化大等特点,使得传统的控制方法难以适应过热蒸汽温度的控制,出现过热蒸汽温度波动大,甚至超温等问题。对此,采用数据处理群集方法(GMDH)神经网络建立了过热蒸汽温度动态预测模型,以预测过热蒸汽温度的变化趋势。仿真结果表明,基于GMDH神经网络的过热蒸汽温度预测效果优于线性神经网络和BP神经网络,具有较好的移植性和实用性。 展开更多
关键词 超超临界 1 000 MW机组 过热蒸汽温度 gmdh神经网络 预测模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部