The satellite pseudo-range fault detection with the Receiver Autonomous Integrity Monitoring(RAIM)method is affected by several satellite observations and the geometric distribution of satellites.The poor geometry dis...The satellite pseudo-range fault detection with the Receiver Autonomous Integrity Monitoring(RAIM)method is affected by several satellite observations and the geometric distribution of satellites.The poor geometry distribution of satellites will conceal the positioning errorcaused by the satellite pseudo-range fault,resulting in unreliable detection results.Therefore,the availability evaluation must be made before RAIM to ensure that the fault detection performance will not be affected.On June 23,2020,China successfully launched the 30 th(last)navigation satellite of BeiDou’s third-generation navigation satellite system(BDS-3),which is also the 55 th BeiDou navigation satellite.Combining all the available satellites of BDS-1,BDS-2 and BDS-3,the positioning performance of BDS can be greatly improved.In order to evaluate the RAIM availability of BeiDou Navigation Satellite System(BDS)and Global Positioning System(GPS)in China,this paper first deduces the mathematical models and their characteristics of the three RAIM availability evaluation methods.Then,the study area(N10°-70°,E60°-150°)is divided into 4536 grid points at intervals of 1°×1°in latitude and longitude,and the elevations of these grid points are taken from the global terrain data file.The Horizontal Protection Level(HPL)values of these grid points are calculated during 8-15 June 2020 using BDS and GPS ephemeris data.The RAIM availability differences between the two systems are compared and analysed.The analysis shows the Horizontal Protection Level method(HPLM)based on single-satellite pseudo-range fault is the most practical and convenient.During the 8-day observation period,the HPL values of BDS are significantly smaller than those of GPS in terms of geographic location and observation time,and the variation of HPL time series of BDS is also smaller than that of GPS,which indicates that the RAIM availability of GPS in China is not as good as that of BDS.Most importantly,in the four flight stages of the aircraft’s Oceanic/Continental lowdensity En-route,Continental En-route,Terminal En-route and Non-precision approach(NPA),BDS can completely satisfy its RAIM availability requirement,while GPS can only meet the availability requirement of the En-route(Oceanic/Continental low density)phase,and the availability of the other three phases can at least reach 99.714%.展开更多
This paper used the statistical methods of quality control to assess receiver autonomous integrity monitoring(RAIM) availability and fault detection(FD) capability of BeiDou14(Phase II with 14 satellites),BeiDou(Phase...This paper used the statistical methods of quality control to assess receiver autonomous integrity monitoring(RAIM) availability and fault detection(FD) capability of BeiDou14(Phase II with 14 satellites),BeiDou(Phase III with 35 satellites) and GPS(with 31 satellites) for the first time. The three constellations are simulated and their RAIM performances are quantified by the global, Asia-Pacific region and temporal variations respectively. RAIM availability must be determined before RAIM detection. It is proposed that RAIM availability performances from satellites and constellation geometry configuration are evaluated by the number of visible satellites(NVS, NVS > 5) and geometric dilution of precision(GDOP, GDOP < 6) together. The minimal detectable bias(MDB) and minimal detectable effect(MDE) are considered as a measure of the minimum FD capability of RAIM in the measurement level and navigation position level respectively. The analyses of simulation results testify that the average global RAIM performances for BeiDou are better than that for GPS except global RAIM holes proportion. Moreover, the Asia-Pacific RAIM performances for BeiDou are much better than that for GPS in all indexes. RAIM availability from constellation geometry configuration and RAIM minimum FD capability for BeiDou14 are better than that for GPS in Asia-Pacific region in all cases, but the BeiDou14 RAIM availability from satellites are worse than GPS's. The methods and conclusions can be used for RAIM prediction and real-time assessment of all kinds of Global Navigation Satellite Systems(GNSS) constellation.展开更多
基金funded by the National Natural Science Foundation of China(41904171,42061077)Shanxi Province Education Department Science and Technology Research Plan(18JK0513)+1 种基金State Key Laboratory of Rail Transit Engineering Informatization(FSDI,SKLK19-10)Key Laboratory of ModernEngineering Survey,Natural Science Foundation of Jiangxi Province(20202BAB214029)。
文摘The satellite pseudo-range fault detection with the Receiver Autonomous Integrity Monitoring(RAIM)method is affected by several satellite observations and the geometric distribution of satellites.The poor geometry distribution of satellites will conceal the positioning errorcaused by the satellite pseudo-range fault,resulting in unreliable detection results.Therefore,the availability evaluation must be made before RAIM to ensure that the fault detection performance will not be affected.On June 23,2020,China successfully launched the 30 th(last)navigation satellite of BeiDou’s third-generation navigation satellite system(BDS-3),which is also the 55 th BeiDou navigation satellite.Combining all the available satellites of BDS-1,BDS-2 and BDS-3,the positioning performance of BDS can be greatly improved.In order to evaluate the RAIM availability of BeiDou Navigation Satellite System(BDS)and Global Positioning System(GPS)in China,this paper first deduces the mathematical models and their characteristics of the three RAIM availability evaluation methods.Then,the study area(N10°-70°,E60°-150°)is divided into 4536 grid points at intervals of 1°×1°in latitude and longitude,and the elevations of these grid points are taken from the global terrain data file.The Horizontal Protection Level(HPL)values of these grid points are calculated during 8-15 June 2020 using BDS and GPS ephemeris data.The RAIM availability differences between the two systems are compared and analysed.The analysis shows the Horizontal Protection Level method(HPLM)based on single-satellite pseudo-range fault is the most practical and convenient.During the 8-day observation period,the HPL values of BDS are significantly smaller than those of GPS in terms of geographic location and observation time,and the variation of HPL time series of BDS is also smaller than that of GPS,which indicates that the RAIM availability of GPS in China is not as good as that of BDS.Most importantly,in the four flight stages of the aircraft’s Oceanic/Continental lowdensity En-route,Continental En-route,Terminal En-route and Non-precision approach(NPA),BDS can completely satisfy its RAIM availability requirement,while GPS can only meet the availability requirement of the En-route(Oceanic/Continental low density)phase,and the availability of the other three phases can at least reach 99.714%.
基金the National High Technology Research and Development Program(863)of China(No.2011AA120503)
文摘This paper used the statistical methods of quality control to assess receiver autonomous integrity monitoring(RAIM) availability and fault detection(FD) capability of BeiDou14(Phase II with 14 satellites),BeiDou(Phase III with 35 satellites) and GPS(with 31 satellites) for the first time. The three constellations are simulated and their RAIM performances are quantified by the global, Asia-Pacific region and temporal variations respectively. RAIM availability must be determined before RAIM detection. It is proposed that RAIM availability performances from satellites and constellation geometry configuration are evaluated by the number of visible satellites(NVS, NVS > 5) and geometric dilution of precision(GDOP, GDOP < 6) together. The minimal detectable bias(MDB) and minimal detectable effect(MDE) are considered as a measure of the minimum FD capability of RAIM in the measurement level and navigation position level respectively. The analyses of simulation results testify that the average global RAIM performances for BeiDou are better than that for GPS except global RAIM holes proportion. Moreover, the Asia-Pacific RAIM performances for BeiDou are much better than that for GPS in all indexes. RAIM availability from constellation geometry configuration and RAIM minimum FD capability for BeiDou14 are better than that for GPS in Asia-Pacific region in all cases, but the BeiDou14 RAIM availability from satellites are worse than GPS's. The methods and conclusions can be used for RAIM prediction and real-time assessment of all kinds of Global Navigation Satellite Systems(GNSS) constellation.