期刊文献+
共找到842篇文章
< 1 2 43 >
每页显示 20 50 100
广义回归神经网络修正GNSS垂向坐标时间序列环境负荷效应
1
作者 高菡 匡翠林 楚彬 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2024年第9期3357-3366,共10页
环境负荷通常会引起GNSS垂向坐标时间序列发生非线性变化,对其影响进行精细改正是GNSS坐标时间序列研究中的一项重要内容.传统的物理模型环境负荷改正方法在模型建立与参数求解等过程中需引入部分简化与近似,导致改正不够精细.本文引入... 环境负荷通常会引起GNSS垂向坐标时间序列发生非线性变化,对其影响进行精细改正是GNSS坐标时间序列研究中的一项重要内容.传统的物理模型环境负荷改正方法在模型建立与参数求解等过程中需引入部分简化与近似,导致改正不够精细.本文引入数据驱动的广义回归神经网络(Generalized Regression Neural Network,GRNN)方法改善环境负荷修正效果.以川滇地区GNSS测站的垂向坐标时间序列为研究对象,首先基于变分贝叶斯独立分量分析(Variational Bayesian Independent Component Analysis,vbICA)技术分离坐标序列,分析得到周期性分量,发现大气及陆地储水负荷是引起测站坐标发生季节性变化的重要原因.然后通过GRNN建立与大气及陆地储水相关的环境因素数据和坐标时间序列数据之间的关联,进而消除坐标时间序列中两种环境负荷的影响.经数据驱动的GRNN建模修正大气及陆地储水负荷影响后,各测站坐标残差序列的RMS值平均降低了21.56%,而采用传统的物理模型方法修正后平均降低幅度仅为9.29%,可认为基于GRNN方法的改正效果更好.另外顾及地下温度、冰浓度、比湿、降雨率四种气候因素的影响建立GRNN模型,结果表明地下温度因素对川滇地区GNSS测站垂向坐标影响稍大. 展开更多
关键词 GNSS坐标时间序列 环境负荷 广义回归神经网络 数据驱动
下载PDF
基于鹈鹕优化算法优化广义回归神经网络的电动汽车充电负荷短期预测
2
作者 陈晓华 吴杰康 +2 位作者 张勋祥 龙泳丞 王志平 《山东电力技术》 2024年第7期1-9,共9页
针对目前电动汽车充电负荷预测精度不足的问题,提出了一种结合互补集合经验模态分解和鹈鹕优化算法优化广义回归神经网络的组合预测方法。首先,利用互补集合经验模态分解将电动汽车充电负荷时间序列分解成多个固有模态函数分量和一个残... 针对目前电动汽车充电负荷预测精度不足的问题,提出了一种结合互补集合经验模态分解和鹈鹕优化算法优化广义回归神经网络的组合预测方法。首先,利用互补集合经验模态分解将电动汽车充电负荷时间序列分解成多个固有模态函数分量和一个残差分量。其次,对于分解后的固有模态分量容易出现冗杂信息,利用样本熵对分解后数值相近的固有模态分量进行相加重构,降低冗杂程度。最后,考虑广义回归神经网络的预测效果与平滑因子的数值有很大关系,利用鹈鹕优化算法优化广义回归神经网络的平滑因子,进而对电动汽车充电负荷进行短期预测。仿真表明,所提出的预测方法可以有效地提高电动汽车充电负荷的预测精度,具有较高的实用性。 展开更多
关键词 广义回归神经网络 鹈鹕优化算法 电动汽车充电负荷 短期预测 互补集合经验模态分解
下载PDF
基于木材振动特性的月琴声学品质广义回归神经网络预测模型
3
作者 杨扬 《森林工程》 北大核心 2024年第4期160-167,共8页
泡桐木始终是制造乐器谐振元件的重要材料,对乐器的音质有着重要的影响。采用广义回归神经网络(General Regression Neural Network,GRNN)建立基于共鸣板振动性能的月琴音质评价模型。以制造出的9把月琴为研究对象,根据月琴的音质评价... 泡桐木始终是制造乐器谐振元件的重要材料,对乐器的音质有着重要的影响。采用广义回归神经网络(General Regression Neural Network,GRNN)建立基于共鸣板振动性能的月琴音质评价模型。以制造出的9把月琴为研究对象,根据月琴的音质评价以及制备月琴的共鸣板信息,提出月琴音质的预测模型。在180组数据中,随机抽取135组数据进行训练,其余45组数据进行验证。使用主成分分析方法、GRNN建立月琴声学质量评价模型,并进行仿真预测。结果表明,基于共鸣板的振动特性,利用Matlab仿真可以实现对月琴音质的预测,预测的准确率可达到91.41%。此外,研究还表明,泡桐木共鸣板的动态弹性模量、声辐射阻尼系数、弹性模量、剪切模量比、声阻抗,损耗角正切和声转化率等参数均是影响其制备成品月琴声学质量的重要因素。 展开更多
关键词 广义回归神经网络 主成分分析 声学品质 振动特性 共鸣板 木材 民族乐器
下载PDF
基于广义回归神经网络的风力发电场设备温度自适应预测方法
4
作者 张二辉 徐兴朝 +1 位作者 郑卫剑 贾政 《自动化与仪表》 2024年第10期72-75,共4页
传统预测方法很难有效处理风力发电场设备温度各种影响因素之间的非线性关系,从而导致预测结果的不准确。针对上述问题,研究一种基于广义回归神经网络的风力发电场设备温度自适应预测方法。分析风力发电场设备温度影响因素并收集这些因... 传统预测方法很难有效处理风力发电场设备温度各种影响因素之间的非线性关系,从而导致预测结果的不准确。针对上述问题,研究一种基于广义回归神经网络的风力发电场设备温度自适应预测方法。分析风力发电场设备温度影响因素并收集这些因素对应的数据,组成样本,对样本实施离群值处理和归一化处理。利用广义回归神经网络自适应预测设备温度并利用鸽群优化算法(PIO算法)自适应调整广义回归神经网络预测模型参数——平滑因子σ,提高其自适应能力。结果表明,所研究方法的预测偏度最高误差仅为0.3℃,说明该方法在预测温度时具有良好的准确性,预测值接近实际值。 展开更多
关键词 广义回归神经网络 风力发电场 设备温度 PIO算法 自适应预测方法
下载PDF
粒子群算法优化的广义回归神经网络求解流形学习样本外点问题
5
作者 黄红兵 《乐山师范学院学报》 2024年第4期1-7,共7页
目前流形学习已成功应用于降维和数据可视化领域,但在监督分类中的应用效果并不理想,解决好样本外点问题对其应用效果至关重要。基于此,采用粒子群算法优化广义回归神经网络计算测试样本的低维嵌入,获得的结果可直接用于分类。借助粒子... 目前流形学习已成功应用于降维和数据可视化领域,但在监督分类中的应用效果并不理想,解决好样本外点问题对其应用效果至关重要。基于此,采用粒子群算法优化广义回归神经网络计算测试样本的低维嵌入,获得的结果可直接用于分类。借助粒子群算法的全局搜索能力对处理样本外点问题具有较好的预测性能;在使用糖尿病、虹膜和声呐三个公开数据集的实验中,粒子群算法优化广义回归神经网络的分类总体精度分别为77.63%、100%和88.89%,优于其他8种分类方法,表明该算法可行、有效;同时,该算法能显著降低数据复杂度,提高了预测、模式分类和机器学习的准确性。 展开更多
关键词 粒子群算法 广义回归神经网络 流形学习 数据降维 样本外点问题
下载PDF
改进的MVO-GRNN神经网络岩爆预测模型研究
6
作者 侯克鹏 包广拓 孙华芬 《安全与环境学报》 CAS CSCD 北大核心 2024年第3期923-932,共10页
准确预测岩爆烈度等级能有效指导岩爆灾害的防控。根据影响岩爆发生及烈度等级的3个因素构建岩爆评价指标体系,提出一种基于改进多元宇宙算法(Improved Multi-Verse Optimizer,IMVO)优化广义回归神经网络(General Regression Neural Net... 准确预测岩爆烈度等级能有效指导岩爆灾害的防控。根据影响岩爆发生及烈度等级的3个因素构建岩爆评价指标体系,提出一种基于改进多元宇宙算法(Improved Multi-Verse Optimizer,IMVO)优化广义回归神经网络(General Regression Neural Network,GRNN)的岩爆预测模型。在普通多元宇宙算法(MVO)的基础上,运用自适应平衡机制调节MVO算法中的虫洞存在概率(V_(WEP))和旅行距离率(V_(TDR))两个重要参数来改进该算法;再运用改进的多元宇宙算法优化广义回归神经网络的光滑度,通过训练数据优选出最佳光滑因子σ,得到IMVO-GRNN神经网络岩爆烈度预测模型;最后结合工程实例验证模型的性能。研究表明,该模型相比传统模型寻优能力更强,精度更高,为岩爆预测提供了一种新的思路。 展开更多
关键词 安全工程 岩爆预测 多元宇宙算法 广义回归神经网络(grnn) 虫洞存在概率 旅行距离率
原文传递
基于广义回归神经网络插值的雷达引信回波模拟
7
作者 王洋洋 曹菲 《火箭军工程大学学报》 2024年第5期69-80,共12页
为了更加精确地对雷达引信回波信号进行模拟,以北京市密云区数字高程模型(Digital Elevation Model, DEM)作为地形研究数据进行插值分析和回波模拟,提出了使用广义回归神经网络(Generalized Regression Neural Network,GRNN)进行插值的... 为了更加精确地对雷达引信回波信号进行模拟,以北京市密云区数字高程模型(Digital Elevation Model, DEM)作为地形研究数据进行插值分析和回波模拟,提出了使用广义回归神经网络(Generalized Regression Neural Network,GRNN)进行插值的方法。在插值后的DEM仿真地形上,考虑地形起伏对雷达引信回波遮挡的影响,仿真得到传统插值算法和GRNN插值算法下的雷达引信回波图,通过内插精度和回波分析了算法性能。结果表明:在地貌类型以平原、丘陵为主的地区,相较于传统算法,本文算法能够描绘地形细节,更加精确地模拟回波分布规律。 展开更多
关键词 广义回归神经网络 高程插值算法 精度评价 回波模拟 深度神经网络 数字高程模型
原文传递
基于广义回归神经网络的煤矿带式输送机模型预测控制 被引量:3
8
作者 任志玲 王梓行 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2023年第1期92-98,共7页
针对煤矿井下运输系统能耗大、生产成本高等问题,提出基于广义回归神经网络(GRNN)的带式输送机模型预测控制(MPC)策略。引入动态自适应权重和莱维飞行策略改进天牛须算法(BAS),并采用改进的天牛须算法对广义回归神经网络进行超参数寻优... 针对煤矿井下运输系统能耗大、生产成本高等问题,提出基于广义回归神经网络(GRNN)的带式输送机模型预测控制(MPC)策略。引入动态自适应权重和莱维飞行策略改进天牛须算法(BAS),并采用改进的天牛须算法对广义回归神经网络进行超参数寻优。建立了带式运输机模型,采用模型预测控制策略对带式输送机的运行进行优化与控制;优化过程采用了基于分时电价的控制策略。实验结果表明:与带式输送机传统的运行方式相比,所提出的控制策略不仅可以减少能源消耗,而且可以有效降低运行成本。 展开更多
关键词 带式输送机 广义回归神经网络 模型预测控制 天牛须搜索算法
原文传递
基于可见光谱结合神经网络算法快速鉴别特级初榨橄榄油
9
作者 袁媛 张晋 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第10期2973-2980,共8页
随着中国经济的不断繁荣,人民对物质生活水平提出了更高的要求,预防疾病、改善身体功能的食品成为当前消费市场的“热点”。油脂能提供人体所必需的能量,食用油是人类获取油脂的主要途径之一,而高品质植物油含有对人体健康更有益的物质... 随着中国经济的不断繁荣,人民对物质生活水平提出了更高的要求,预防疾病、改善身体功能的食品成为当前消费市场的“热点”。油脂能提供人体所必需的能量,食用油是人类获取油脂的主要途径之一,而高品质植物油含有对人体健康更有益的物质,例如单不饱和脂肪酸、多酚、角鲨烯、维生素E等营养物质。由于采用物理冷榨工艺,特级初榨橄榄油几乎保留了其橄榄果中所有的营养物质,油酸含量高达70%。因此,虽然作为一种“舶来品”,特级初榨橄榄油进入中国市场后一直是植物油市场中的“宠儿”,其价格也明显高于市场上的普通植物油。在利益的驱动下,特级初榨橄榄油的制假贩假现象屡禁不止,制假贩假的手段也不断更新迭代,从而造成国内橄榄油市场假冒伪劣产品屡禁不止,掺假的油品不仅会对消费者的生命财产造成伤害,而且也会影响合法经营者的生产和销售,扰乱销售市场,破坏市场秩序,影响民众对特级初榨橄榄油的认可度。为实现特级初榨橄榄油掺伪量的快速、准确、低成本地检测,提出一种基于广义回归神经网络结合紫外可见光谱实现植物油定性定量分析方法。广义回归神经网络在学习速度和非线性映射能力上表现出色,且扩散因子是其网络的唯一优化参数,不需要反向传播和反复迭代。与其他检测技术相比,紫外可见光谱技术在检测周期、稳定性、低维护成本等方面具有压倒性优势。通过两种方法的联用在植物油定性鉴别中实现了100%的判别,在特级初榨橄榄油掺伪定量检测中实现了判定系数R2优于0.98875,均方根误差RMSE优于0.03833的结果。研究结果表明,该模型在植物油种类鉴别及特级初榨橄榄油掺伪定量检测中表现出优秀的预测能力。 展开更多
关键词 定性定量 植物油 特级初榨橄榄油 紫外可见光谱 广义回归神经网络
下载PDF
一种基于广义回归神经网络的裂纹扩展定量监测模型 被引量:1
10
作者 安雨晴 杨宇 王莉 《航空科学技术》 2023年第3期40-48,共9页
金属结构上裂纹的实时监测对飞行器损伤容限/疲劳试验、飞机定寿,以及保证服役过程中的安全性和可靠性、安排检修等任务具有重要意义。为实时监测金属结构疲劳裂纹的扩展过程,本文通过广义回归神经网络方法研究了提取自导波信号的多维... 金属结构上裂纹的实时监测对飞行器损伤容限/疲劳试验、飞机定寿,以及保证服役过程中的安全性和可靠性、安排检修等任务具有重要意义。为实时监测金属结构疲劳裂纹的扩展过程,本文通过广义回归神经网络方法研究了提取自导波信号的多维损伤特征参量同裂纹长度之间的定量关系。结果表明,导波信号随着裂纹长度的变化存在规律性变化,损伤特征参量与裂纹长度存在一定的非线性相关性;多维损伤特征参量可实现较为准确的裂纹定量监测。可见广义回归神经网络可用于建立准确度较高的导波结构裂纹定量监测模型。 展开更多
关键词 裂纹长度 定量监测 损伤特征参量 导波 广义回归神经网络
下载PDF
广义回归神经网络(GRNN)在AMT挡位判别中的应用 被引量:8
11
作者 杨小辉 徐颖强 +2 位作者 李世杰 王耀锋 张玉同 《机械设计与制造》 北大核心 2009年第5期72-74,共3页
通过分析传统方法研究AMT换档规律存在的问题和神经网络在不能获得精确数学模型的非线性系统中能达到最优控制的特性以及在线学习的能力等,提出基于广义回归神经网络(GRNN)进行AMT的换档规律的研究,并针对某4档轿车机械自动变速器,建立... 通过分析传统方法研究AMT换档规律存在的问题和神经网络在不能获得精确数学模型的非线性系统中能达到最优控制的特性以及在线学习的能力等,提出基于广义回归神经网络(GRNN)进行AMT的换档规律的研究,并针对某4档轿车机械自动变速器,建立该车自动变速两个参数(车速、油门开度)神经网络控制模型,运用Matlab软件进行换档过程的仿真分析。研究结果表明:利用GRNN研究AMT的换档规律过程简单、适应性强等,能够正确有效地进行车辆档位判别。 展开更多
关键词 广义回归神经网络(grnn) 电控机械式自动变速器(AMT) 换挡规律 仿真
下载PDF
基于广义回归神经网络的网络信息资源个性化推荐方法 被引量:2
12
作者 吴赟婷 《信息与电脑》 2023年第5期38-40,共3页
传统网络信息资源个性化推荐方法无法存储长期信息,导致推荐精度低,召回率高。因此,研究基于广义回归神经网络的网络信息资源个性化推荐方法。首先,获取初始兴趣偏好特征数据,分配相应权重进行归一化处理;其次,确定训练样本的收敛范围,... 传统网络信息资源个性化推荐方法无法存储长期信息,导致推荐精度低,召回率高。因此,研究基于广义回归神经网络的网络信息资源个性化推荐方法。首先,获取初始兴趣偏好特征数据,分配相应权重进行归一化处理;其次,确定训练样本的收敛范围,调整权值得到不同层神经元之间的连接权值和阈值,并输出匹配结果;最后,运用过滤推荐算法计算环境网络信息资源偏好和用户网络关系,得到训练样本相似度,生成近似数据集,根据偏好完成个性化推荐。实验结果表明,该方法的召回率最低,推荐准确程度高。 展开更多
关键词 广义回归神经网络 信息资源 个性化 推荐方法
下载PDF
基于人工神经网络的UWB坐标误差一步改正模型
13
作者 王一帆 李增科 +4 位作者 蒋诗政 陈远 黄林超 吉丽娅 邓伟昉 《测绘通报》 CSCD 北大核心 2024年第7期77-82,共6页
针对超宽带(UWB)定位存在的坐标误差难以利用常规手段进行改正的问题,本文提出了基于广义回归神经网络(GRNN)和反向传播神经网络(BPNN)的UWB坐标误差一步改正模型。改正模型以UWB原始定位坐标、与不同基站间距离为输入,以UWB相对高精度... 针对超宽带(UWB)定位存在的坐标误差难以利用常规手段进行改正的问题,本文提出了基于广义回归神经网络(GRNN)和反向传播神经网络(BPNN)的UWB坐标误差一步改正模型。改正模型以UWB原始定位坐标、与不同基站间距离为输入,以UWB相对高精度参考值误差为输出,分别以GNSS RTK点位坐标为动态试验参考值、全站仪点位坐标为静态试验参考值,对改正模型进行训练。将改正模型分别用于改正非建模样本点的UWB坐标,然后对改正前后的精度及不同改正模型的精度进行了比较分析。结果表明:利用人工神经网络直接建立UWB坐标一步改正模型的方法是可行的,该方法无须再次利用改正后的测距值解算坐标,更加简便、快捷;两种模型总体均能有效改善UWB的动态、静态定位坐标精度;且基于GRNN的改正模型相比基于BPNN的改正模型可以更有效地改善UWB坐标误差,改正后的UWB动态定位平面坐标精度可达厘米级,静态定位平面坐标精度高达毫米级。 展开更多
关键词 超宽带定位 坐标误差改正 广义回归神经网络 反向传播神经网络 一步改正
原文传递
基于广义回归神经网络的用水量预测模型及其应用
14
作者 张玉芳 《无线互联科技》 2023年第20期132-135,共4页
用水预测对落实最严格水资源管理制度、实现节水型社会建设具有重要意义。文章建立基于非线性优化光滑因子的广义回归神经网络模型,用来刻画人口、GDP、工业增加值、有效灌溉面积和实际灌溉面积与用水量之间的非线性映射关系。用水量预... 用水预测对落实最严格水资源管理制度、实现节水型社会建设具有重要意义。文章建立基于非线性优化光滑因子的广义回归神经网络模型,用来刻画人口、GDP、工业增加值、有效灌溉面积和实际灌溉面积与用水量之间的非线性映射关系。用水量预测实验表明:2016—2021年庆阳市用水量的预测值和实际值吻合较好,2016年用水量的预测值和实际值偏差最大,2019年和2021年用水量的预测值和实际值完全吻合,均方误差只有0.4,相对误差只有0.15;2016—2021年平凉市用水量的预测值和实际值之间的偏差不大,比较稳定,均方误差只有0.3,相对误差只有0.13,预测准确率达到87%。 展开更多
关键词 广义回归神经网络模型 光滑因子 用水量 用水因子 非线性
下载PDF
GRNN神经网络在汽车发动机性能预测中的应用
15
作者 林冬燕 《集美大学学报(自然科学版)》 CAS 2023年第5期467-472,共6页
建立多输入参数条件下发动机动力性能及燃油经济性能预测模型,研究平滑因子、输入参数对预测精度的影响;建立预测模型,研究发动机运转参数对动力性能与燃油消耗率的影响规律。研究结果表明:采用广义回归神经网络(GRNN)能构建准确性较高... 建立多输入参数条件下发动机动力性能及燃油经济性能预测模型,研究平滑因子、输入参数对预测精度的影响;建立预测模型,研究发动机运转参数对动力性能与燃油消耗率的影响规律。研究结果表明:采用广义回归神经网络(GRNN)能构建准确性较高的发动机动力性能与燃油经济性能预测模型;选择合适的平滑因子可使GRNN算法获得的预测值避免出现较大波动,同时兼顾较高预测精度;保持合适的油门开度能使发动机输出较高的功率和转矩;低功率或低油门开度使发动机燃油消耗率较高。 展开更多
关键词 汽车发动机 预测模型 广义回归神经网络 动力性能 燃油消耗率
下载PDF
基于广义神经网络的网络攻击检测与分类方法 被引量:2
16
作者 张明明 刘凯 +5 位作者 李贤慧 许梦晗 顾颖程 张见豪 程环宇 王永利 《信息安全研究》 CSCD 2023年第6期593-601,共9页
如今虚拟世界日趋复杂,网络攻击和新出现的安全威胁逐步增加,因此需要研究针对网络攻击的智能化检测和分类方法,以全面地观察网络活动,阻止恶意行为.提出了一种基于广义回归神经网络(generalized regression neural networks,GRNN)建立... 如今虚拟世界日趋复杂,网络攻击和新出现的安全威胁逐步增加,因此需要研究针对网络攻击的智能化检测和分类方法,以全面地观察网络活动,阻止恶意行为.提出了一种基于广义回归神经网络(generalized regression neural networks,GRNN)建立的入侵检测模型,对恶意网络攻击进行智能化检测和分类,并使用主流的NSL-KDD数据集进行了测试.实验结果表明,所提出的技术相较于目前的其他攻击检测技术,能够更加有效地对恶意行为进行识别与分类. 展开更多
关键词 智能化攻击检测 入侵检测系统 广义回归神经网络 恶意行为 检测
下载PDF
广义回归神经网络在煤灰熔点预测中的应用 被引量:31
17
作者 周昊 郑立刚 +1 位作者 樊建人 岑可法 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2004年第11期1479-1482,共4页
为了提高估算煤灰熔点的精度,采用广义回归神经网络(GRNN)对求解煤灰熔点问题进行了建模.将煤灰组分作为网络输入,煤灰软化温度作为网络输出,采用实验数据训练网络,训练完成的网络作为模型预测煤灰熔点.仿真结果表明,GRNN的预测值与实... 为了提高估算煤灰熔点的精度,采用广义回归神经网络(GRNN)对求解煤灰熔点问题进行了建模.将煤灰组分作为网络输入,煤灰软化温度作为网络输出,采用实验数据训练网络,训练完成的网络作为模型预测煤灰熔点.仿真结果表明,GRNN的预测值与实验值的最大相对误差为2.81%,而反向传播神经网络(BPNN)预测煤灰熔点的相对误差为3.62%.由于GRNN可应用于小样本问题的学习,GRNN比BPNN对煤灰熔点具有更好的预测和泛化能力.GRNN具有设计简单与收敛快的优点,并提高了实时处理与反映最新运行工况参数的预测能力. 展开更多
关键词 灰熔点 灰组分 广义回归神经网络 grnn
下载PDF
基于萤火虫算法?广义回归神经网络的光伏发电功率组合预测 被引量:34
18
作者 王昕 黄柯 +4 位作者 郑益慧 李立学 邵凤鹏 贾立凯 徐清山 《电网技术》 EI CSCD 北大核心 2017年第2期455-461,共7页
随着光伏发电大容量地并入电网,其输出的随机性必将对大电网安全稳定运行造成影响,为此建立了一种变权重的光伏短期组合预测模型,首先通过主成分分析法(principal component analysis,PCA)将影响光伏出力的多重线性因素进行压缩、提取... 随着光伏发电大容量地并入电网,其输出的随机性必将对大电网安全稳定运行造成影响,为此建立了一种变权重的光伏短期组合预测模型,首先通过主成分分析法(principal component analysis,PCA)将影响光伏出力的多重线性因素进行压缩、提取以简化模型输入变量的维数,然后将提取的第一主成分结合灰色关联度来筛选相似日样本,接着将样本分别带入最小二乘支持向量机、改进BP网络2种单一模型进行2次预测。第1次预测作为相似日预测,用来训练权重系数,训练方法是萤火虫算法优化的广义回归神经网络;第2次预测是待预测日的预测。仿真结果验证了所提模型的有效性。 展开更多
关键词 主成分分析法 灰色关联度 萤火虫算法 广义回归神经网络
原文传递
基于广义回归神经网络的货运量预测 被引量:72
19
作者 赵闯 刘凯 李电生 《铁道学报》 EI CAS CSCD 北大核心 2004年第1期12-15,共4页
根据货运量形成的原因 ,分析了货运量和相关影响因素之间的关系以及货运量预测的特点。在此基础上 ,建立货运量预测的广义回归神经网络 (GeneralRegressionNeuralNetwork ,GRNN)模型 ,并以我国 1981~ 2 0 0 1年的货运量和相关经济指标... 根据货运量形成的原因 ,分析了货运量和相关影响因素之间的关系以及货运量预测的特点。在此基础上 ,建立货运量预测的广义回归神经网络 (GeneralRegressionNeuralNetwork ,GRNN)模型 ,并以我国 1981~ 2 0 0 1年的货运量和相关经济指标的历史统计数据作为学习样本 ,通过拟合训练和外推预测分析 。 展开更多
关键词 货运量 预测 广义回归神经网络
下载PDF
基于粒子群算法和广义回归神经网络的岩爆预测 被引量:102
20
作者 贾义鹏 吕庆 尚岳全 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2013年第2期343-348,共6页
岩爆是岩石深部开挖中一种常见的工程地质灾害。为评价岩爆发生的可能性,提出一种基于粒子群算法和广义回归神经网络模型(PSO-GRNN模型)的岩爆预测方法。该方法利用已有岩爆数据,通过神经网络技术建立回归模型,采用粒子群算法对模型参... 岩爆是岩石深部开挖中一种常见的工程地质灾害。为评价岩爆发生的可能性,提出一种基于粒子群算法和广义回归神经网络模型(PSO-GRNN模型)的岩爆预测方法。该方法利用已有岩爆数据,通过神经网络技术建立回归模型,采用粒子群算法对模型参数进行优化,减少人为因素对神经网络设计的影响。据此方法,在能量理论的基础上,选取洞壁围岩最大切向应力、岩石单轴抗压强度、抗拉强度和弹性能量指数作为主要影响因素,利用国内外26组已有工程数据建立岩爆预测的PSO-GRNN模型。通过对苍岭隧道和冬瓜山铜矿岩爆预测的工程实例分析验证该方法的可行性和适用性。所提方法可为类似工程的岩爆预测提供参考。 展开更多
关键词 岩石力学 岩爆 岩石地下开挖 粒子群算法 广义回归神经网络
下载PDF
上一页 1 2 43 下一页 到第
使用帮助 返回顶部