期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Real-time analysis and prediction of shield cutterhead torque using optimized gated recurrent unit neural network 被引量:10
1
作者 Song-Shun Lin Shui-Long Shen Annan Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第4期1232-1240,共9页
An accurate prediction of earth pressure balance(EPB)shield moving performance is important to ensure the safety tunnel excavation.A hybrid model is developed based on the particle swarm optimization(PSO)and gated rec... An accurate prediction of earth pressure balance(EPB)shield moving performance is important to ensure the safety tunnel excavation.A hybrid model is developed based on the particle swarm optimization(PSO)and gated recurrent unit(GRU)neural network.PSO is utilized to assign the optimal hyperparameters of GRU neural network.There are mainly four steps:data collection and processing,hybrid model establishment,model performance evaluation and correlation analysis.The developed model provides an alternative to tackle with time-series data of tunnel project.Apart from that,a novel framework about model application is performed to provide guidelines in practice.A tunnel project is utilized to evaluate the performance of proposed hybrid model.Results indicate that geological and construction variables are significant to the model performance.Correlation analysis shows that construction variables(main thrust and foam liquid volume)display the highest correlation with the cutterhead torque(CHT).This work provides a feasible and applicable alternative way to estimate the performance of shield tunneling. 展开更多
关键词 Earth pressure balance(EPB)shield tunneling Cutterhead torque(CHT)prediction Particle swarm optimization(PSO) Gated recurrent unit(gru)neural network
下载PDF
A Port Ship Flow Prediction Model Based on the Automatic Identification System and Gated Recurrent Units
2
作者 Xiaofeng Xu Xiang’en Bai +3 位作者 Yingjie Xiao Jia He Yuan Xu Hongxiang Ren 《Journal of Marine Science and Application》 CSCD 2021年第3期572-580,共9页
Water transportation today has become increasingly busy because of economic globalization.In order to solve the problem of inaccurate port traffic flow prediction,this paper proposes an algorithm based on gated recurr... Water transportation today has become increasingly busy because of economic globalization.In order to solve the problem of inaccurate port traffic flow prediction,this paper proposes an algorithm based on gated recurrent units(GRUs)and Markov residual correction to pass a fixed cross-section.To analyze the traffic flow of ships,the statistical method of ship traffic flow based on the automatic identification system(AIS)is introduced.And a model is put forward for predicting the ship flow.According to the basic principle of cyclic neural networks,the law of ship traffic flow in the channel is explored in the time series.Experiments have been performed using a large number of AIS data in the waters near Xiazhimen in Zhoushan,Ningbo,and the results show that the accuracy of the GRU-Markov algorithm is higher than that of other algorithms,proving the practicability and effectiveness of this method in ship flow prediction. 展开更多
关键词 Ship flow prediction gru neural network Markov residual correction AIS data
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部