期刊文献+
共找到8,393篇文章
< 1 2 250 >
每页显示 20 50 100
Gut microbial regulation of innate and adaptive immunity after traumatic brain injury 被引量:4
1
作者 Marta Celorrio Kirill Shumilov Stuart H.Friess 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期272-276,共5页
Acute care management of traumatic brain injury is focused on the prevention and reduction of secondary insults such as hypotension,hypoxia,intracranial hypertension,and detrimental inflammation.However,the imperative... Acute care management of traumatic brain injury is focused on the prevention and reduction of secondary insults such as hypotension,hypoxia,intracranial hypertension,and detrimental inflammation.However,the imperative to balance multiple clinical concerns simultaneously often results in therapeutic strategies targeted to address one clinical concern causing unintended effects in other remote organ systems.Recently the bidirectional communication between the gastrointestinal tract and the brain has been shown to influence both the central nervous system and gastrointestinal tract homeostasis in health and disease.A critical component of this axis is the microorganisms of the gut known as the gut microbiome.Changes in gut microbial populations in the setting of central nervous system disease,including traumatic brain injury,have been reported in both humans and experimental animal models and can be further disrupted by off-target effects of patient care.In this review article,we will explore the important role gut microbial populations play in regulating brain-resident and peripheral immune cell responses after traumatic brain injury.We will discuss the role of bacterial metabolites in gut microbial regulation of neuroinflammation and their potential as an avenue for therapeutic intervention in the setting of traumatic brain injury. 展开更多
关键词 gut microbiome gut microbiota gut-brain axis macrophage MICROGLIA MONOCYTE NEUROINFLAMMATION short-chain fatty acids T cell traumatic brain injury
下载PDF
The Effect of Macronutrient Restrictions on Gut Microbiome and Biochemical Parameters of Wistar Albino Rats
2
作者 Blandine Ngum Shu Bernard Tiencheu +5 位作者 Fabrice Tonfack Djikeng Deffo Ngongang Flore Tiepma Dibanda Romelle Feumba Yolandia Jamea Nganje Epanty Lyonga Agnes Namondo Mbongo Aduni Ufuan Achidi 《Journal of Biosciences and Medicines》 2024年第6期286-310,共25页
Macronutrients serve as a source of energy for both gut microbiota and its host. An increase or decrease in macronutrients can either increase or decrease the composition of gut microbiota, leading to gut dysbiosis wh... Macronutrients serve as a source of energy for both gut microbiota and its host. An increase or decrease in macronutrients can either increase or decrease the composition of gut microbiota, leading to gut dysbiosis which has been implicated in many diseases state including non-communicable diseases. To achieve this, seven diets were formulated by restricting 60% of each macronutrient. These diets were fed on 42 albino rats (Wistar), divided into 7 groups of 6 rats each. Group 1 was fed on a normal laboratory chow diet (ND), group 2 received a fat-restricted diet (FRD), group 3 received a protein-restricted diet, (PFD), group 4 received a carbohydrate-restricted diet (CRD), group 5 received a protein and fat-restricted diet (PFRD), group 6 re-ceived a carbohydrate and fat-restricted diet (CFRD) and group 7 received a carbohydrate and protein-restricted diet (CPRD). Feed and water intake were given ad libitum and daily weight and food intake were recorded. The experiment went on for 4 weeks after which animals were sacrificed and intestinal content and blood were collected for analysis (gut microbial composition, glucose, insulin levels, serum lipid, and enzyme). Compared to the control group results showed a decrease in Bacteroides (40.50 - 14.00 CFU), HDL (68.20 - 40.40 mg/dl), and AST (66.62 - 64.74 U/L) in FRD. An increase in AST (66.6 - 69.43 U/L), Bifidobacterial (59.50 - 92.00 CFU) and decreased Bacteroides (40.5 - 19.5 CFU) for PRD was also recorded. CRD reduced Lactobacillus (73 - 33.5 CFU), total bacterial count (129 - 48 CFU), HDL (68.2 - 30.8 mg/dl), and cholesterol (121.44 - 88.65 mg/dl) whereas intestinal composition of E. coli (30.5 - 51.5 CFU) increased. PFRD increased Lactobacillus (73.00 - 102.5 CFU), Bifidobacterial (59.5 - 100 CFU), HDL (68.2 - 74.7 mg/dl), and Triglyceride (111.67 - 146.67 mg/dl) concentration. Meanwhile, a reduction in Bifidobacterial (59.5 - 41.5 CFU), and an increasing of AST (66.62 - 70.30 U/l) were recorded for CFRD. However, Bacteroides (40.5 69.5 CFU), LDL (30.95 - 41.98 mg/dl) increased and Bifidobacterial (59.5 - 38.00 CFU) and HDL (68.2 - 53.5 mg/dl) decreased for CPRD. This work, therefore, concludes that macronutrient restriction causes significant changes in serum marker and enzyme profile, and gut microbial composition which can cause gut dysbiosis and later on could expose the host to inflammatory diseases in the long run. 展开更多
关键词 DIETS DYSBIOSIS gut Microbiome Lipid Profile Serum Enzymes Non-Communicable Disease gut Microbiota gut Dysbiosis Restricted Diet
下载PDF
Correlation between the gut microbiome and neurodegenerative diseases:a review of metagenomics evidence 被引量:5
3
作者 Xiaoyan Liu Yi Liu +7 位作者 Junlin Liu Hantao Zhang Chaofan Shan Yinglu Guo Xun Gong Mengmeng Cui Xiubin Li Min Tang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期833-845,共13页
A growing body of evidence suggests that the gut microbiota contributes to the development of neurodegenerative diseases via the microbiota-gut-brain axis.As a contributing factor,microbiota dysbiosis always occurs in... A growing body of evidence suggests that the gut microbiota contributes to the development of neurodegenerative diseases via the microbiota-gut-brain axis.As a contributing factor,microbiota dysbiosis always occurs in pathological changes of neurodegenerative diseases,such as Alzheimer’s disease,Parkinson’s disease,and amyotrophic lateral sclerosis.High-throughput sequencing technology has helped to reveal that the bidirectional communication between the central nervous system and the enteric nervous system is facilitated by the microbiota’s diverse microorganisms,and for both neuroimmune and neuroendocrine systems.Here,we summarize the bioinformatics analysis and wet-biology validation for the gut metagenomics in neurodegenerative diseases,with an emphasis on multi-omics studies and the gut virome.The pathogen-associated signaling biomarkers for identifying brain disorders and potential therapeutic targets are also elucidated.Finally,we discuss the role of diet,prebiotics,probiotics,postbiotics and exercise interventions in remodeling the microbiome and reducing the symptoms of neurodegenerative diseases. 展开更多
关键词 biomarker diet pattern gut microbiota gut-brain axis METAGENOMICS mitochondrial dysfunction multi-omics neurodegenerative disease NEUROINFLAMMATION probiotic
下载PDF
Immune regulation of the gut-brain axis and lung-brain axis involved in ischemic stroke 被引量:4
4
作者 Xiaodi Xie Lei Wang +2 位作者 Shanshan Dong ShanChun Ge Ting Zhu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期519-528,共10页
Local ischemia often causes a series of inflammatory reactions when both brain immune cells and the peripheral immune response are activated.In the human body,the gut and lung are regarded as the key reactional target... Local ischemia often causes a series of inflammatory reactions when both brain immune cells and the peripheral immune response are activated.In the human body,the gut and lung are regarded as the key reactional targets that are initiated by brain ischemic attacks.Mucosal microorganisms play an important role in immune regulation and metabolism and affect blood-brain barrier permeability.In addition to the relationship between peripheral organs and central areas and the intestine and lung also interact among each other.Here,we review the molecular and cellular immune mechanisms involved in the pathways of inflammation across the gut-brain axis and lung-brain axis.We found that abnormal intestinal flora,the intestinal microenvironment,lung infection,chronic diseases,and mechanical ventilation can worsen the outcome of ischemic stroke.This review also introduces the influence of the brain on the gut and lungs after stroke,highlighting the bidirectional feedback effect among the gut,lungs,and brain. 展开更多
关键词 enteric glia cells gut microbiota gut-brain axis immune response inflammation ischemic stroke lung-brain axis microglia
下载PDF
Gut flora in multiple sclerosis:implications for pathogenesis and treatment 被引量:2
5
作者 Weiwei Zhang Ying Wang +2 位作者 Mingqin Zhu Kangding Liu Hong-Liang Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1480-1488,共9页
Multiple sclerosis is an inflammatory disorder chara cterized by inflammation,demyelination,and neurodegeneration in the central nervous system.Although current first-line therapies can help manage symptoms and slow d... Multiple sclerosis is an inflammatory disorder chara cterized by inflammation,demyelination,and neurodegeneration in the central nervous system.Although current first-line therapies can help manage symptoms and slow down disease progression,there is no cure for multiple sclerosis.The gut-brain axis refers to complex communications between the gut flo ra and the immune,nervous,and endocrine systems,which bridges the functions of the gut and the brain.Disruptions in the gut flora,termed dys biosis,can lead to systemic inflammation,leaky gut syndrome,and increased susceptibility to infections.The pathogenesis of multiple sclerosis involves a combination of genetic and environmental factors,and gut flora may play a pivotal role in regulating immune responses related to multiple scle rosis.To develop more effective therapies for multiple scle rosis,we should further uncover the disease processes involved in multiple sclerosis and gain a better understanding of the gut-brain axis.This review provides an overview of the role of the gut flora in multiple scle rosis. 展开更多
关键词 gut flora gut-brain axis multiple sclerosis PATHOGENESIS treatment
下载PDF
Gut microbiota-astrocyte axis: new insights into age-related cognitive decline
6
作者 Lan Zhang Jingge Wei +5 位作者 Xilei Liu Dai Li Xiaoqi Pang Fanglian Chen Hailong Cao Ping Lei 《Neural Regeneration Research》 SCIE CAS 2025年第4期990-1008,共19页
With the rapidly aging human population,age-related cognitive decline and dementia are becoming increasingly prevalent worldwide.Aging is considered the main risk factor for cognitive decline and acts through alterati... With the rapidly aging human population,age-related cognitive decline and dementia are becoming increasingly prevalent worldwide.Aging is considered the main risk factor for cognitive decline and acts through alterations in the composition of the gut microbiota,microbial metabolites,and the functions of astrocytes.The microbiota–gut–brain axis has been the focus of multiple studies and is closely associated with cognitive function.This article provides a comprehensive review of the specific changes that occur in the composition of the gut microbiota and microbial metabolites in older individuals and discusses how the aging of astrocytes and reactive astrocytosis are closely related to age-related cognitive decline and neurodegenerative diseases.This article also summarizes the gut microbiota components that affect astrocyte function,mainly through the vagus nerve,immune responses,circadian rhythms,and microbial metabolites.Finally,this article summarizes the mechanism by which the gut microbiota–astrocyte axis plays a role in Alzheimer’s and Parkinson’s diseases.Our findings have revealed the critical role of the microbiota–astrocyte axis in age-related cognitive decline,aiding in a deeper understanding of potential gut microbiome-based adjuvant therapy strategies for this condition. 展开更多
关键词 age aging Alzheimer’s disease ASTROCYTES cognitive decline dementia gut microbiota gut–brain axis microbial metabolites NEUROINFLAMMATION Parkinson’s disease
下载PDF
Junshanyinzhen tea extract prevents obesity by regulating gut microbiota and metabolic endotoxemia in high-fat diet fed rats
7
作者 Jian Ouyang Xiuping Li +6 位作者 Changwei Liu Danmin Lu Jie Ouyang Fang Zhou Qi Liu Jianan Huang Zhonghua Liu 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第4期2036-2047,共12页
Obesity is associated with gut dysbiosis and metabolic endotoxin.Junshanyinzhen tea extract(JSTE)reduced fat accumulation and body weight in obese mice.However,the effects and mechanism of JSTE in preventing obesity w... Obesity is associated with gut dysbiosis and metabolic endotoxin.Junshanyinzhen tea extract(JSTE)reduced fat accumulation and body weight in obese mice.However,the effects and mechanism of JSTE in preventing obesity were unclear.Therefore,we used different doses of JSTE(75,150 and 300 mg/(kg·day))to evaluate the effect on high-fat diet(HFD)-induced rats under 8 weeks of intervention.Here,our results showed that JSTE could significantly reduce body weight gain,blood lipid levels and fat accumulation,improve fatty damage in liver tissue(P<0.05).In addition,JSTE increased the expression of intestinal tight junction proteins(P<0.05),relieved metabolic endotoxemia(P<0.05)and chronic low-grade inflammation in HFD rats.Sequencing of fecal samples showed that JSTE could effectively reverse the microbial diversity and the ratio of Firmicutes to Bacteroidetes to normal levels in HFD-fed rats.Desulfovibrioceae and Erysipelotrichaceae,which are positively related to obesity,were decreased by JSTE intervention(P<0.05).while Bifidobacteriaceae,Bacteroidaceae,Akkermansia,and Clostridium,which are negatively related to obesity,were increased.Together,these results suggested that JSTE might effectively prevent obesity by modulating gut microbiota dysbiosis,intestinal barrier dysfunction,metabolic endotoxemia and chronic low-grade infl ammation in HFD-induced rats. 展开更多
关键词 Junshanyinzhen tea OBESITY gut microbiota gut barrier function Metabolic endotoxemia
下载PDF
Gut microbiota remodeling drived by dietary millet protein prevents the metabolic syndrome
8
作者 Shuhua Shan Ruopeng Yin +6 位作者 Jiangying Shi Lizhen Zhang Jiaqi Zhou Qinqin Qiao Xiushan Dong Wenjing Zhao Zhuoyu Li 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第4期1987-2001,共15页
Metabolic syndrome(Met S)is a chronic disease associated with the disturbance of gut microbiota homeostasis.Metabolites derived from gut microbes play essential roles in Met S prevention and therapy.Here,we focused on... Metabolic syndrome(Met S)is a chronic disease associated with the disturbance of gut microbiota homeostasis.Metabolites derived from gut microbes play essential roles in Met S prevention and therapy.Here,we focused on the inhibitory effect of the extract of millet bran protein(EMBP)on a high-fat diet(HFD)-induced Met S,aiming to identify gut microbiota and their metabolites that involve in the anti-Met S activity of EMBP.The obesity,chronic inflammation,insulin resistance in Met S mouse models were abolished after EMBP treatment.The protective mechanism of EMBP against HFD-induced Met S may depend on improved gut barrier function.Using microbiome analysis,we found that EMBP supplementation improved gut microbiome dysbiosis in Met S mice,specifically upregulating Bacteroides acidifaciens.The fecal microbiota transplantation(FMT)also demonstrated this phenomenon.In addition,metabolomic analysis showed that EMBP mediates metabolic profiling reprogramming in Met S mice.Notably,a microbiota-derived metabolite,gamma-aminobutyric acid(GABA),is enriched by EMBP.In addition,exogenous GABA treatment produced a similar protective effect to EMBP by improving NRF2-dependent gut barrier function to protect HFDinduced Met S.The results suggest that EMBP suppress host Met S by remodeling of gut microbiota as an effective candidate for next-generation medicine food dual purpose dietary supplement to intervene in MetS. 展开更多
关键词 Metabolic syndrome gut microbiota Extract of millet bran protein Gamma-aminobutyric acid gut barrier function
下载PDF
2-O-β-D-Glucopyranosyl-L-ascorbic acid,an ascorbic acid derivative isolated from the fruits of Lycium barbarum L.,ameliorates high fructose-induced neuroinflammation in mice:involvement of gut microbiota and leaky gut
9
作者 Wei Dong Yujia Peng +9 位作者 Guijie Chen Zhiyong Xie Weiqi Xu Wangting Zhou Jia Mi Lu Lu Yi Sun Xiaoxiong Zeng Youlong Cao Yamei Yan 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期241-253,共13页
Western diet(rich in highly refined sugar and fat)can induce a range of metabolic dysfunctions in animals and humans,including neuroinflammation and cognitive function decline.Neuroinflammation and cognitive impairmen... Western diet(rich in highly refined sugar and fat)can induce a range of metabolic dysfunctions in animals and humans,including neuroinflammation and cognitive function decline.Neuroinflammation and cognitive impairment,two critical pathological characteristics of Alzheimer’s disease,have been closely associated with microbial alteration via the gut-brain axis.Thus,the present study aimed to investigate the influence of 2-O-β-D-glucopyranosyl-L-ascorbic acid(AA-2βG)isolated from the fruits of Lycium barbarum on preventing the high-fructose diet(HFrD)induced neuroinflammation in mice.It was found that AA-2βG prevented HFr D-induced cognitive deficits.AA-2βG also predominantly enhanced the gut barrier integrity,decreased lipopolysaccharide entry into the circulation,which subsequently countered the activation of glial cells and neuroinflammatory response.These beneficial effects were transmissible by horizontal fecal microbiome transplantation,transferring from AA-2βG fed mice to HFr D fed mice.Additionally,AA-2βG exerted neuroprotective effects involving the enrichment of Lactobacillus and Akkermansia,potentially beneficial intestinal bacteria.The present study provided the evidence that AA-2βG could improve indices of cognition and neuroinflammmation via modulating gut dybiosis and preventing leaky gut.As a potential functional food ingredient,AA-2βG may be applied to attenuate neuroinflammation associated with Western-style diets. 展开更多
关键词 Neuroinfl ammation gut microbiota Leaky gut Lipopolysaccharide Fecal microbiome transplantation 2-O-β-D-Glucopyranosyl-L-ascorbic acid
下载PDF
Gut microbiota modulating intestinal stem cell differentiation
10
作者 Lin He Chen Zhu +3 位作者 Xiang-Feng Zhou Shu-E Zeng Le Zhang Kuan Li 《World Journal of Stem Cells》 SCIE 2024年第6期619-622,共4页
Proliferation and differentiation of intestinal stem cell(ISC)to replace damaged gut mucosal epithelial cells in inflammatory states is a critical step in ameliorating gut inflammation.However,when this disordered pro... Proliferation and differentiation of intestinal stem cell(ISC)to replace damaged gut mucosal epithelial cells in inflammatory states is a critical step in ameliorating gut inflammation.However,when this disordered proliferation continues,it induces the ISC to enter a cancerous state.The gut microbiota on the free surface of the gut mucosal barrier is able to interact with ISC on a sustained basis.Micro-biota metabolites are able to regulate the proliferation of gut stem and progenitor cells through transcription factors,while in steady state,differentiated colono-cytes are able to break down such metabolites,thereby protecting stem cells at the gut crypt.In the future,the gut flora and its metabolites mediating the regulation of ISC differentiation will be a potential treatment for enteropathies. 展开更多
关键词 Intestinal stem cells gut microbiota gut stem niche MICROENVIRONMENT PROBIOTICS
下载PDF
Diet and physical activity influence the composition of gut microbiota,benefit on Alzheimer's disease
11
作者 Jinyue Zhou Min Tang +4 位作者 Wanyi Li Rui Fang Chunlan Tang Qinwen Wang 《Food Science and Human Wellness》 SCIE CSCD 2024年第2期541-555,共15页
Alzheimer's disease is a neurodegenerative disease with complex etiology.Gut microbiota influences the gutbrain axis,which may affect pathways related to the pathogenesis of Alzheimer's disease.Additionally,di... Alzheimer's disease is a neurodegenerative disease with complex etiology.Gut microbiota influences the gutbrain axis,which may affect pathways related to the pathogenesis of Alzheimer's disease.Additionally,diet and physical activity are likely to affect the pathology of Alzheimer's disease as well as the gut microbiota.This demonstrates that it may be possible to prevent or halt the progression of Alzheimer's disease by regulating the gut microbiota using diet and physical activity strategies.Therefore,the present study reviews the association between these two interventions and gut microbiota in the human body.It also summarizes how these two interventions benefit Alzheimer's disease.Furthermore,the primary limitations of these two interventions are discussed and promising strategies are proposed,which may be beneficial to further study and develop the intervening measure for the progression of Alzheimer's disease. 展开更多
关键词 Alzheimer’s disease gut microbiota Brain-gut axis DIET Physical activity
下载PDF
Bidirectional regulation of the brain-gut-microbiota axis following traumatic brain injury
12
作者 Xinyu You Lin Niu +4 位作者 Jiafeng Fu Shining Ge Jiangwei Shi Yanjun Zhang Pengwei Zhuang 《Neural Regeneration Research》 SCIE CAS 2025年第8期2153-2168,共16页
Traumatic brain injury is a prevalent disorder of the central nervous system.In addition to primary brain parenchymal damage,the enduring biological consequences of traumatic brain injury pose long-term risks for pati... Traumatic brain injury is a prevalent disorder of the central nervous system.In addition to primary brain parenchymal damage,the enduring biological consequences of traumatic brain injury pose long-term risks for patients with traumatic brain injury;however,the underlying pathogenesis remains unclear,and effective intervention methods are lacking.Intestinal dysfunction is a significant consequence of traumatic brain injury.Being the most densely innervated peripheral tissue in the body,the gut possesses multiple pathways for the establishment of a bidirectional“brain-gut axis”with the central nervous system.The gut harbors a vast microbial community,and alterations of the gut niche contribute to the progression of traumatic brain injury and its unfavorable prognosis through neuronal,hormonal,and immune pathways.A comprehensive understanding of microbiota-mediated peripheral neuroimmunomodulation mechanisms is needed to enhance treatment strategies for traumatic brain injury and its associated complications.We comprehensively reviewed alterations in the gut microecological environment following traumatic brain injury,with a specific focus on the complex biological processes of peripheral nerves,immunity,and microbes triggered by traumatic brain injury,encompassing autonomic dysfunction,neuroendocrine disturbances,peripheral immunosuppression,increased intestinal barrier permeability,compromised responses of sensory nerves to microorganisms,and potential effector nuclei in the central nervous system influenced by gut microbiota.Additionally,we reviewed the mechanisms underlying secondary biological injury and the dynamic pathological responses that occur following injury to enhance our current understanding of how peripheral pathways impact the outcome of patients with traumatic brain injury.This review aimed to propose a conceptual model for future risk assessment of central nervous system-related diseases while elucidating novel insights into the bidirectional effects of the“brain-gut-microbiota axis.” 展开更多
关键词 traumatic brain injury brain-gut-microbiome axis gut microbiota NEUROIMMUNE immunosuppression host defense vagal afferents bacterial infection dorsal root ganglia nociception neural circuitry
下载PDF
Investigating the causal link between gut microbiota and dry age-related macular degeneration:a bidirectional Mendelian randomization study
13
作者 Hai-Yan Huang Jing Wang +1 位作者 Bo Qin Yao Tan 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第9期1723-1730,共8页
AIM:To assess the causal link between 211 gut microbiota(GM)taxa and dry age-related macular degeneration(dAMD)risk.METHODS:Mendelian randomization using instrumental factors taken from a genome-wide association study... AIM:To assess the causal link between 211 gut microbiota(GM)taxa and dry age-related macular degeneration(dAMD)risk.METHODS:Mendelian randomization using instrumental factors taken from a genome-wide association study(GWAS)were used.Inverse variance weighted(IVW)analysis and sensitivity analysis were performed on the FinnGen project,which included 5095 cases and 222590 controls.RESULTS:The IVW analysis showed substantial genusand family-level relationships between GM taxa and dAMD risk.Specifically,the family Peptococcaceae(P=0.03),genus Bilophila(P=3.91×10^(-3)),genus Faecalibacterium(P=6.55×10^(-3)),and genus Roseburia(P=0.04)were linked to a higher risk of developing dAMD,while the genus Candidatus Soleaferrea(P=7.75×10^(-4)),genus Desulfovibrio(P=0.04)and genus Eubacterium ventriosum group(P=0.04)exhibited a protective effect against dAMD.No significant causal relationships were observed at higher taxonomic levels.Additionally,in the reverse IVW analysis,no meaningful causal effects of the 7 GM taxa.CONCLUSION:These findings give support for the gutretina axis participation in dAMD and shed light on putative underlying processes.Investigations on the connection between GM and dAMD have not yet revealed the underlying mechanism. 展开更多
关键词 dry age-related macular degeneration gut microbiota mendelian randomization gut-retina axis genome-wide association study
原文传递
Interplay of gut microbiota,glucagon-like peptide receptor agonists,and nutrition:New frontiers in metabolic dysfunction-associated steatotic liver disease therapy
14
作者 Merve Guney-Coskun Metin Basaranoglu 《World Journal of Gastroenterology》 SCIE CAS 2024年第43期4682-4688,共7页
The gut-liver axis plays a crucial role in the development and progression of metabolic dysfunction-associated steatotic liver disease(MASLD).Key metabolites,including lipopolysaccharides,short-chain fatty acids(SCFAs... The gut-liver axis plays a crucial role in the development and progression of metabolic dysfunction-associated steatotic liver disease(MASLD).Key metabolites,including lipopolysaccharides,short-chain fatty acids(SCFAs),bile acids,and beneficial gut bacteria such as Bifidobacterium and Lactobacillus,are pivotal in this process.Glucagon-like peptide-1 receptor agonists(GLP-1 RAs)show promise in managing MASLD by promoting weight loss,enhancing insulin secretion,and improving liver health.They restore gut-liver axis functionality,and their effects are amplified through dietary modifications and gut microbiometargeted therapies.Emerging research highlights the interplay between GLP-1 RAs and gut microbiota,indicating that the gut microbiome significantly influences therapeutic outcomes.Metabolites produced by gut bacteria,can stimulate glucagon-like peptide-1(GLP-1)secretion,further improving metabolic health.Integrating dietary interventions with GLP-1 RA treatment may enhance liver health by modulating the gut microbiota-SCFAs-GLP-1 pathway.Future research is needed to understand personalized effects,with prebiotics and probiotics offering treatment avenues for MASLD. 展开更多
关键词 Metabolic dysfunction-associated steatotic liver disease Glucagon-like peptide-1 receptor agonists gut microbiome gut-liver axis Diet intervention
下载PDF
Challenges in integrating traditional Chinese medicine and gut microbiota research for insomnia treatment
15
作者 Maham Bilal Abdulqadir J Nashwan 《World Journal of Clinical Cases》 SCIE 2024年第29期6271-6274,共4页
The gut microbiome is an extensive variety of bacteria with a range of metabolic capabilities that can be pathogenic,beneficial,or opportunistic.Changes in the gut microbiota's composition can affect the link betw... The gut microbiome is an extensive variety of bacteria with a range of metabolic capabilities that can be pathogenic,beneficial,or opportunistic.Changes in the gut microbiota's composition can affect the link between gut integrity and host health as well as cause disruptions to numerous neurological systems.The second most prevalent mental health problem,insomnia has a negative social and economic impact.Currently,it is becoming increasingly obvious how crucial it is to preserve the delicate balance of gut microbiota to treat illness-related symptoms like insomnia.Although traditional Chinese medicine has proposed an effective strategy against insomnia through gut microbiota alteration in animal models,studies in human models are limited.This decreases the predictive value of the studies in terms of human outcomes.This editorial places an emphasis on cultural sensitivity rather than scientific reasoning that promotes the use of traditional Chinese medicine(TCM).We aim to emphasize the concern that promoting TCM could divert resources from conventional medical research,leading to suboptimal care. 展开更多
关键词 gut microbiota INSOMNIA Traditional Chinese medicine Microbial gut-brain axis Cultural sensitivity Sleep disorders
下载PDF
Elaidic acid-induced intestinal barrier damage led to gut-liver axis derangement and triggered NLRP3 inflammasome in the liver of SD rats
16
作者 Hui Liu Xuenan Li +5 位作者 Lu Li Yucai Li Haiyang Yan Yong Pang Wenliang Li Yuan Yuan 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1279-1291,共13页
Previous studies have shown that trans fatty acids(TFA) are associated with several chronic diseases,the gut microbiota is directly influenced by dietary components and linked to chronic diseases.Our research investig... Previous studies have shown that trans fatty acids(TFA) are associated with several chronic diseases,the gut microbiota is directly influenced by dietary components and linked to chronic diseases.Our research investigated the effects of elaidic acid(EA),a typical TFA,on the gut microbiota to understand the underlying mechanisms of TFA-related chronic diseases.16S rDNA gene sequencing on faecal samples from Sprague-Dawley rats were performed to explore the composition change of the gut microbiota by EA gavage for 4 weeks.The results showed that the intake of EA increased the abundance of well-documented harmful bacteria,such as Proteobacteria,Anaerotruncus,Oscillibacter and Desulfovibrionaceae.Plus,EA induced translocation of lipopolysaccharides(LPS) and the above pathogenic bacteria,disrupted the intestinal barrier,led to gut-liver axis derangement and TLR4 pathway activation in the liver.Overall,EA induced intestinal barrier damage and regulated TLR4-MyD88-NF-κB/MAPK pathways in the liver of SD rats,leading to the activation of NLRP3 inflammasome and inflammatory liver damage. 展开更多
关键词 Elaidic acid(EA) gut microbiota Intestinal barrier gut-liver axis TLR4-MyD88-NF-κB/MAPK pathways NLRP3 inflammasome
下载PDF
Importance of the gut microbiota in the gut-liver axis in normal and liver disease
17
作者 Stanislav Kotlyarov 《World Journal of Hepatology》 2024年第6期878-882,共5页
The gut microbiota is of growing interest to clinicians and researchers.This is because there is a growing understanding that the gut microbiota performs many different functions,including involvement in metabolic and... The gut microbiota is of growing interest to clinicians and researchers.This is because there is a growing understanding that the gut microbiota performs many different functions,including involvement in metabolic and immune processes that are systemic in nature.The liver,with its important role in detoxifying and metabolizing products from the gut,is at the forefront of interactions with the gut microbiota.Many details of these interactions are not yet known to clinicians and researchers,but there is growing evidence that normal gut microbiota function is important for liver health.At the same time,factors affecting the gut microbiota,including nutrition or medications,may also have an effect through the gut-liver axis. 展开更多
关键词 gut microbiota LIVER gut-liver axis IMMUNITY Non-alcoholic fatty liver disease
下载PDF
Update on the gut microbiome in health and diseases
18
作者 Maurizio Salvadori Giuseppina Rosso 《World Journal of Methodology》 2024年第1期18-32,共15页
The Human Microbiome Project,Earth Microbiome Project,and next-generation sequencing have advanced novel genome association,host genetic linkages,and pathogen identification.The microbiome is the sum of the microbes,t... The Human Microbiome Project,Earth Microbiome Project,and next-generation sequencing have advanced novel genome association,host genetic linkages,and pathogen identification.The microbiome is the sum of the microbes,their genetic information,and their ecological niche.This study will describe how millions of bacteria in the gut affect the human body in health and disease.The gut microbiome changes in relation with age,with an increase in Bacteroidetes and Firmicutes.Host and environmental factors affecting the gut microbiome are diet,drugs,age,smoking,exercise,and host genetics.In addition,changes in the gut microbiome may affect the local gut immune system and systemic immune system.In this study,we discuss how the microbiome may affect the metabolism of healthy subjects or may affect the pathogenesis of metabolism-generating metabolic diseases.Due to the high number of publications on the argument,from a methodologically point of view,we decided to select the best papers published in referred journals in the last 3 years.Then we selected the previously published papers.The major goals of our study were to elucidate which microbiome and by which pathways are related to healthy and disease conditions. 展开更多
关键词 gut microbiome DYSBIOSIS Pathobionts gut-brain axis Heart-brain axis Metabolic diseases Omics techniques
下载PDF
The Gut Brain Connection
19
作者 Saeed Alzubide Muslih Alhalafi 《Journal of Behavioral and Brain Science》 2024年第3期103-117,共15页
The gut-brain connection is a bidirectional communication system that links the gut microbiome to the central nervous system (CNS). The gut-brain axis communicates through a variety of mechanisms, including the releas... The gut-brain connection is a bidirectional communication system that links the gut microbiome to the central nervous system (CNS). The gut-brain axis communicates through a variety of mechanisms, including the release of hormones, neurotransmitters, and cytokines. These signaling molecules can travel from the gut to the brain and vice versa, influencing various physiological and cognitive functions. Emerging therapeutic strategies targeting the gut-brain connection include probiotics, prebiotics, and faecal microbiota transplantation (FMT). Probiotics are live microorganisms that are similar to the beneficial bacteria that are naturally found in the gut. Prebiotics are non-digestible fibers that feed the beneficial bacteria in the gut. FMT is a procedure in which faecal matter from a healthy donor is transplanted into the gut of a person with a diseased microbiome. Probiotics, prebiotics, and FMT have been shown to be effective in treating a variety of gastrointestinal disorders, and there is growing evidence that they may also be effective in treating neurological and psychiatric disorders. This review explores the emerging field of the gut-brain connection, focusing on the communication pathways between the gut microbiome and the central nervous system. We summarize the potential roles of gut dysbiosis in various neurological and psychiatric disorders. Additionally, we discuss potential therapeutic strategies, research limitations, and future directions in this exciting area of research. More research is needed to fully understand the mechanisms underlying the gut-brain connection and to develop safe and effective therapies that target this pathway. However, the findings to date are promising, and there is the potential to revolutionize the way we diagnose and treat a variety of neurological and psychiatric disorders. 展开更多
关键词 gut-Brain Connection gut-Brain Axis Enteric Nervous System Microbiota NEUROTRANSMITTERS Neuroinflammation and Mental Health
下载PDF
Influence of Gut and Lung Microbiota and the Gut-Lung Axis on Bronchopulmonary Dysplasia
20
作者 Binxiang Xu Yumei Liang 《Journal of Clinical and Nursing Research》 2024年第9期30-35,共6页
Bronchopulmonary dysplasia(BPD),also known as neonatal chronic lung disease,is a common respiratory disease in preterm infants.Preterm infants with BPD often exhibit changes in gut and lung microbiota.In recent years,... Bronchopulmonary dysplasia(BPD),also known as neonatal chronic lung disease,is a common respiratory disease in preterm infants.Preterm infants with BPD often exhibit changes in gut and lung microbiota.In recent years,with the development of high-throughput sequencing technology,more and more mechanisms of the gut-lung axis have been confirmed,helping to explore new directions for the treatment of BPD using microecological agents.This paper reviews the roles of gut microbiota,lung microbiota,and the gut-lung axis in the pathogenesis of BPD in preterm infants,providing new research avenues for the prevention and treatment of BPD. 展开更多
关键词 Bronchopulmonary dysplasia gut-lung axis gut microbiota Lung microbiota
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部