In this paper we show that two significant phenomena of magnetospheric chorus emission can be explained by the participation of beam-like electron structures,created by Landau-resonant interaction with growing oblique...In this paper we show that two significant phenomena of magnetospheric chorus emission can be explained by the participation of beam-like electron structures,created by Landau-resonant interaction with growing oblique whistler waves.The first concerns the widely observed spectral gap near half the electron cyclotron frequency Ωe;the second is related to the observation of very obliquely propagating lower-band waves that cannot be directly generated by temperature anisotropy.Concerning the gap,kinetic dispersion theory reveals that interference of the beam-related cyclotron mode ω~Ωe-kVb with the conventional whistler mode leads to mode splitting and the appearance of a ’forbidden’ area in the ω-k space.Thereby the beam velocity appears as an essential parameter.It is directly related to the phase velocity of the most unstable whistler wave mode,which is close to VAe/2 for sufficiently hot electrons(VAe is the electron Alfven velocity).To clarify the second point,we show that Landau-resonant beams with Vb Vb<VAe/2,which arise in cold plasmas from unstable upper-band waves,are able to generate lower-band whistler mode waves at very oblique propagation(θ≥60°).Our studies demonstrate the important role of Landau-resonant electrons in nonlinear whistler wave generation in the magnetosphere.展开更多
Soil-pipeline separation due to tunnelling has been certainly substantiated in previous model tests.However,this phenomenon has seldom been considered in current analytical solutions.This study formulates a tensionles...Soil-pipeline separation due to tunnelling has been certainly substantiated in previous model tests.However,this phenomenon has seldom been considered in current analytical solutions.This study formulates a tensionless Winkler solution that could make allowance for gap formation in soil-pipeline interaction analyses.The solution is validated by comparisons with existing experimental measurements and two recognized analytical solutions.Also,its advantage over an existing Winkler solution is addressed.Further parametric studies reveal that the effects of gap formation on the response of a pipeline rely largely on the tunnel volume loss and the pipeline’s bending stiffness and burial depth.In general,a pipeline’s bending moments and subgrade reaction forces are more susceptible than its deflections to the gap formation.展开更多
In aircraft assembly, interlayer burr formation in dry drilling of stacked metal materials is a common problem. Traditional manual deburring operation seriously affects the assembly qual- ity and assembly efficiency, ...In aircraft assembly, interlayer burr formation in dry drilling of stacked metal materials is a common problem. Traditional manual deburring operation seriously affects the assembly qual- ity and assembly efficiency, is time-consuming and costly, and is not conducive to aircraft automatic assembly based on industrial robot. In this paper, the formation of drilling exit burr and the influ- ence of interlayer gap on interlayer burr formation were studied, and the mechanism of interlayer gap formation in drilling stacked aluminum alloy plates was investigated, a simplified mathematical model of interlayer gap based on the theory of plates and shells and finite element method was established. The relationship between interlayer gap and interlayer burr, as well as the effect of feed rate and pressing force on interlayer burr height and interlayer gap was discussed. The result shows that theoretical interlayer gap has a positive correlation with interlayer burr height and preloading nressing force is an effective method to control interlaver burr formation.展开更多
文摘In this paper we show that two significant phenomena of magnetospheric chorus emission can be explained by the participation of beam-like electron structures,created by Landau-resonant interaction with growing oblique whistler waves.The first concerns the widely observed spectral gap near half the electron cyclotron frequency Ωe;the second is related to the observation of very obliquely propagating lower-band waves that cannot be directly generated by temperature anisotropy.Concerning the gap,kinetic dispersion theory reveals that interference of the beam-related cyclotron mode ω~Ωe-kVb with the conventional whistler mode leads to mode splitting and the appearance of a ’forbidden’ area in the ω-k space.Thereby the beam velocity appears as an essential parameter.It is directly related to the phase velocity of the most unstable whistler wave mode,which is close to VAe/2 for sufficiently hot electrons(VAe is the electron Alfven velocity).To clarify the second point,we show that Landau-resonant beams with Vb Vb<VAe/2,which arise in cold plasmas from unstable upper-band waves,are able to generate lower-band whistler mode waves at very oblique propagation(θ≥60°).Our studies demonstrate the important role of Landau-resonant electrons in nonlinear whistler wave generation in the magnetosphere.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52174101 and 52208380)the Department of Science and Technology of Guangdong Province,China(Grant No.2021ZT09G087)+4 种基金the Guangdong Basic and Applied Basic Research Foundation,China(Grant Nos.2023A1515030243,2023A1515011634)Zhuhai Basic and Applied Basic Research Foundation,China(Grant No.ZH22017003210005PWC)the open fund project of Key Laboratory of Safe Construction and Intelligent Maintenance for Urban Shield Tunnels of Zhejiang Province,China(Grant No.ZUCC-UST-22-03)General Research and Development Projects of Guangdong Provincial Communications Group Co.,Ltd.,China(Grant No.JT2022YB25)Highway Projects of Guangdong Provincial Development and Reform Commission,China(Grant No.2108-441400-04-01-637272).
文摘Soil-pipeline separation due to tunnelling has been certainly substantiated in previous model tests.However,this phenomenon has seldom been considered in current analytical solutions.This study formulates a tensionless Winkler solution that could make allowance for gap formation in soil-pipeline interaction analyses.The solution is validated by comparisons with existing experimental measurements and two recognized analytical solutions.Also,its advantage over an existing Winkler solution is addressed.Further parametric studies reveal that the effects of gap formation on the response of a pipeline rely largely on the tunnel volume loss and the pipeline’s bending stiffness and burial depth.In general,a pipeline’s bending moments and subgrade reaction forces are more susceptible than its deflections to the gap formation.
基金the financial support of the Aeronautical Science Foundation of China(Nos.2013ZE52067,2014ZE52057)
文摘In aircraft assembly, interlayer burr formation in dry drilling of stacked metal materials is a common problem. Traditional manual deburring operation seriously affects the assembly qual- ity and assembly efficiency, is time-consuming and costly, and is not conducive to aircraft automatic assembly based on industrial robot. In this paper, the formation of drilling exit burr and the influ- ence of interlayer gap on interlayer burr formation were studied, and the mechanism of interlayer gap formation in drilling stacked aluminum alloy plates was investigated, a simplified mathematical model of interlayer gap based on the theory of plates and shells and finite element method was established. The relationship between interlayer gap and interlayer burr, as well as the effect of feed rate and pressing force on interlayer burr height and interlayer gap was discussed. The result shows that theoretical interlayer gap has a positive correlation with interlayer burr height and preloading nressing force is an effective method to control interlaver burr formation.