Electromagnetic wave(EMW)absorbing materials have an irreplaceable position in the field of military stealth as well as in the field of electromagnetic pollution control.And in order to cope with the complex electroma...Electromagnetic wave(EMW)absorbing materials have an irreplaceable position in the field of military stealth as well as in the field of electromagnetic pollution control.And in order to cope with the complex electromagnetic environment,the design of multifunctional and multiband high efficiency EMW absorbers remains a tremendous challenge.In this work,we designed a three-dimensional porous structure via the salt melt synthesis strategy to optimize the impedance matching of the absorber.Also,through interfacial engineering,a molybdenum carbide transition layer was introduced between the molybdenum selenide nanoparticles and the three-dimensional porous carbon matrix to improve the absorption behavior of the absorber.The analysis indicates that the number and components of the heterogeneous interfaces have a significant impact on the EMW absorption performance of the absorber due to mechanisms such as interfacial polarization and conduction loss introduced by interfacial engineering.Wherein,the prepared MoSe_(2)/MoC/PNC composites showed excellent EMW absorption performance in C,X,and Ku bands,especially exhibiting a reflection loss of−59.09 dB and an effective absorption bandwidth of 6.96 GHz at 1.9 mm.The coordination between structure and components endows the absorber with strong absorption,broad bandwidth,thin thickness,and multi-frequency absorption characteristics.Remarkably,it can effectively reinforce the marine anticorrosion property of the epoxy resin coating on Q235 steel substrate.This study contributes to a deeper understanding of the relationship between interfacial engineering and the performance of EMW absorbers,and provides a reference for the design of multifunctional,multiband EMW absorption materials.展开更多
This study examines the stability regimes of three-dimensional interfacial gravity waves.The numerical results of the linear stability analysis extend the three-dimensional surface waves results of Ioualalen and Khari...This study examines the stability regimes of three-dimensional interfacial gravity waves.The numerical results of the linear stability analysis extend the three-dimensional surface waves results of Ioualalen and Kharif(1994)to three-dimensional interfacial waves.An approach of the collocation type has been developed for this purpose.The equations of motion are reduced to an eigenvalue problem where the perturbations are spectrally decomposed into normal modes.The results obtained showed that the density ratio plays a stabilizing factor.In addition,the dominant instability is of three-dimensional structure,and it belongs to class I for all values of density ratio.展开更多
Liquid film cooling as an advanced cooling technology is widely used in space vehicles.Stable operation of liquid film along the rocket combustion inner wall is crucial for thermal protection of rocket engines.The sta...Liquid film cooling as an advanced cooling technology is widely used in space vehicles.Stable operation of liquid film along the rocket combustion inner wall is crucial for thermal protection of rocket engines.The stability of liquid film is mainly determined by the characteristics of interfacial wave,which is rarely investigated right now.How to improve the stability of thin film has become a hot spot.In view of this,an advanced model based on the conventional Volume of Fluid(VOF)model is adopted to investigate the characteristics of interfacial wave in gas-liquid flow by using OpenFOAM,and the mechanism of formation and development of wave is revealed intuitively through numerical study.The effects from gas velocity,surface tension and dynamic viscosity of liquid(three factors)on the wave are studied respectively.It can be found that the gas velocity is critical to the formation and development of wave,and four modes of droplets generation are illustrated in this paper.Besides,a gas vortex near the gas-liquid interface can induce formation of wave easily,so changing the gas vortex state can regulate formation and development of wave.What’s more,the change rules of three factors influencing on the interfacial wave are obtained,and the surface tension has a negative effect on the formation and development of wave only when the surface tension coefficient is above the critical value,whereas the dynamic viscosity has a positive effect in this process.Lastly,the maximum height and maximum slope angle of wave will level off as the gas velocity increases.Meanwhile,the maximum slope angle of wave is usually no more than 38°,no matter what happens to the three factors.展开更多
In the present paper, we endeavor to accomplish a diagram, which demarcates the validity ranges for interfacial wave theories in a two-layer system, to meet the needs of design in ocean engineering. On the basis of th...In the present paper, we endeavor to accomplish a diagram, which demarcates the validity ranges for interfacial wave theories in a two-layer system, to meet the needs of design in ocean engineering. On the basis of the available solutions of periodic and solitary waves, we propose a guideline as principle to identify the validity regions of the interfacial wave theories in terms of wave period T, wave height H, upper layer thickness dl, and lower layer thick-ness d2, instead of only one parameter-water depth d as in the water surface wave circumstance. The diagram proposed here happens to be Le Mehaute's plot for free surface waves if water depth ratio r= d1/d2 approaches to infinity and the upper layer water density p1 to zero. On the contrary, the diagram for water surface waves can be used for two-layer interfacial waves if gravity acceleration g in it is replaced by the reduced gravity defined in this study under the condition of σ=(P2 - Pl)/P2 → 1.0 and r 〉 1.0. In the end, several figures of the validity ranges for various interfacial wavetheories in the two-layer fluid are given and compared with the results for surface waves.展开更多
In the present research, the study of Song (2004) for random interfacial waves in two-layer fluid is extended to the case of fluids moving at different steady uniform speeds. The equations describing the random displa...In the present research, the study of Song (2004) for random interfacial waves in two-layer fluid is extended to the case of fluids moving at different steady uniform speeds. The equations describing the random displacements of the density interface and the associated velocity potentials in two-layer fluid are solved to the second order, and the wave-wave interactions of the wave components and the interactions between the waves and currents are described. As expected, the extended solutions include those obtained by Song (2004) as one special case where the steady uniform currents of the two fluids are taken as zero, and the solutions reduce to those derived by Sharma and Dean (1979) for random surface waves if the density of the upper fluid and the current of the lower fluid are both taken as zero.展开更多
Interfacial waves and wave-induced tangential stress are studied for geostrophic small amplitude waves of two-layer fluid with a top free surface and a fiat bottom. The solutions were deduced from the general form of ...Interfacial waves and wave-induced tangential stress are studied for geostrophic small amplitude waves of two-layer fluid with a top free surface and a fiat bottom. The solutions were deduced from the general form of linear fluid dynamic equations of two-layer fluid under the f-plane approximation, and wave-induced tangential stress were estimated based on the solutions obtained. As expected, the solutions derived from the present work include as special cases those obtained by Sun et al. (2004. Science in China, Ser. D, 47(12): 1147-1154) for geostrophic small amplitude surface wave solutions and wave-induced tangential stress if the density of the upper layer is much smaller than that of the lower layer. The results show that the interface and the surface will oscillate synchronously, and the influence of the earth's rotation both on the surface wave solutions and the interfacial wave solutions should be considered.展开更多
The problem of nonlinear instability of interfacial waves between two immiscible conducting cylindrical fluids of a weak Oldroyd 3-constant kind is studied. The system is assumed to be influenced by an axial magnetic ...The problem of nonlinear instability of interfacial waves between two immiscible conducting cylindrical fluids of a weak Oldroyd 3-constant kind is studied. The system is assumed to be influenced by an axial magnetic field, where the effect of surface tension is taken into account. The analysis, based on the method of multiple scale in both space and time, includes the linear as well as the nonlinear effects. This scheme leads to imposing of two levels of the solvability conditions, which are used to construct like-nonlinear Schr6dinger equations (1-NLS) with complex coefficients. These equations generally describe the competition between nonlinearity and dispersion. The stability criteria are theoret- ically discussed and thereby stability diagrams are obtained for different sets of physical parameters. Proceeding to the nonlinear step of the problem, the results show the appearance of dual role of some physical parameters. Moreover, these effects depend on the wave kind, short or long, except for the ordinary viscosity parameter. The effect of the field on the system stability depends on the existence of viscosity and differs in the linear case of the problem from the nonlinear one. There is an obvious difference between the effect of the three Oldroyd constants on the system stability. New instability regions in the parameter space, which appear due to nonlinear effects, are shown.展开更多
Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significan...Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significant challenging in regulating local phase evolution.Herein,accordion-shaped Co/Co_(3)O_(4)@N-doped carbon nanosheets(Co/Co_(3)O_(4)@NC)with gradient magnetic heterointerfaces have been fabricated via the cooperative high-temperature carbonization and lowtemperature oxidation process.The results indicate that the surface epitaxial growth of crystal Co_(3)O_(4) domains on local Co nanoparticles realizes the adjustment of magnetic-heteroatomic components,which are beneficial for optimizing impedance matching and interfacial polarization.Moreover,gradient magnetic heterointerfaces simultaneously realize magnetic coupling,and long-range magnetic diffraction.Specifically,the synthesized Co/Co_(3)O_(4)@NC absorbents display the strong electromagnetic wave attenuation capability of−53.5 dB at a thickness of 3.0 mm with an effective absorption bandwidth of 5.36 GHz,both are superior to those of single magnetic domains embedded in carbon matrix.This design concept provides us an inspiration in optimizing interfacial polarization,regulating magnetic coupling and promoting electromagnetic wave absorption.展开更多
By using two-parallel conductance probes,the instantaneous film thickness of gas-liquidtwo-phase flow within a horizontal plexiglass pipe of 50mm inner diameter was experimentallymeasured.The pipe was 6680mm long.Seve...By using two-parallel conductance probes,the instantaneous film thickness of gas-liquidtwo-phase flow within a horizontal plexiglass pipe of 50mm inner diameter was experimentallymeasured.The pipe was 6680mm long.Several wave patterns were distinguished through statisticalanalysis of signals of film thicknesses.Wave pattern maps were obtained and compared with resultsof former studies.The characteristics of the interfacial waves,such as time-averaged film thickness,wave height,wave propagation speed,wavelength and wave frequency,were systematically investigated.The effect of the exit structure of the test section on interfacial waves was experimentally examined.展开更多
In this paper,we discuss the interfacial internal waves with a rigid boundary in a three-layer fluid system,where the density of the upper layer fluid is smaller than that of the lower layer.With the Lagrangian matchi...In this paper,we discuss the interfacial internal waves with a rigid boundary in a three-layer fluid system,where the density of the upper layer fluid is smaller than that of the lower layer.With the Lagrangian matching conditions at the interfaces,the first-order solutions,the second-order solutions and the third-order asymptotic solutions for the interfacial internal waves are obtained in the Lagrangian description using the perturbation method,and the mass transport velocity,the wave frequency,the mean level and the particle trajectory are also given.The results show that the discontinuities across the interfaces appear for the mass transport velocity,wave frequency and mean level,but we find that these discontinuities may disappear if the water depth ratio and the density ratio of the three layer fluids satisfy certain conditions.展开更多
When pycnocline thickness of ocean density is relatively small, density stratification can be well represented as a two-layer system. In this article, a depth integrated model of the two-layer fluid with constant dens...When pycnocline thickness of ocean density is relatively small, density stratification can be well represented as a two-layer system. In this article, a depth integrated model of the two-layer fluid with constant density is considered,and a variant of the edge-based non-hydrostatic numerical scheme is formulated. The resulting scheme is very efficient since it resolves the vertical fluid depth only in two layers. Despite using just two layers, the numerical dispersion is shown to agree with the analytical dispersion curves over a wide range of kd, where k is the wave number and d the water depth. The scheme was tested by simulating an interfacial solitary wave propagating over a flat bottom, as well as over a bottom step. On a laboratory scale, the formation of an interfacial wave is simulated,which also shows the interaction of wave with a triangular bathymetry. Then, a case study using the Lombok Strait topography is discussed, and the results show the development of an interfacial wave due to a strong current passing through a sill.展开更多
Dendritic pattern formation at the interface between liquid and solid is a commonly observed phenomenon in crystal growth and solidification process. The theoretical investigation of dendritic growth is one of the mos...Dendritic pattern formation at the interface between liquid and solid is a commonly observed phenomenon in crystal growth and solidification process. The theoretical investigation of dendritic growth is one of the most profound and highly challenging subjects in the broad areas of interfacial pattern formation, condensed matter physics and materials science, preoccupying many researchers from various areas. Some longstanding key issues on this subject finally gained a breakthrough in the late of last century, via the 'Interracial Wave (IFW) Theory' on the ground of systematical global stability analysis of the basic state of dendritic growth. The original form of the IFW theory mainly focus on the investigation of various axi-symmetric unsteady perturbed modes solutions around the axi-symmetrie basic state of system of dendritic growth. In reality, the system may allow various non-axi-symmetric, unsteady perturbed states. Whether or not the system of dendritic growth allows some growing non-axi-symmetric modes? Will the stationary dendritic pattern be destroyed by some of such non-axi- symmetric modes? Or, in one word, what is the stability property of the system, once the non-axi-symmetric modes can be evoked? The answers for these questions are important for the solid foundation of IFW theory. The present work attempts to settle down these issues and develop a three-dimensional (3D) interfacial wave theory of dendritic growth. Our investigations verify that dendritic growth indeed allows a discrete set of non-axi-symmetric unstable global wave modes, which gives rise to a set of multiple arms spiral waves propagating along the Ivantsov's paraboloid.展开更多
The long wave stability of core-annular flow of power-law fluids with an axial pressure gradient is investigated at low Reynolds number. The interface between the two fluids is populated with an insoluble surfactant. ...The long wave stability of core-annular flow of power-law fluids with an axial pressure gradient is investigated at low Reynolds number. The interface between the two fluids is populated with an insoluble surfactant. The analytic solution for the growth rate of perturbation is obtained with long wave approximation. We are mainly concerned with the effects of shear-thinning/thickening property and interfacial surfactant on the flow stability. The results show that the influence of shear-thinning/thickening property accounts to the change of the capillary number. For a clean interface, the shear-thinning property enhances the capillary instability when the interface is close to the pipe wall. The converse is true when the interface is close to the pipe centerline. For shear-thickening fluids, the situation is reversed. When the interface is close to the pipe centerline, the capillary instability can be restrained due to the influence of surfactant. A parameter set can be found under which the flow is linearly stable.展开更多
The characteristics of both the detonation and explosive loading are studied comparatively. The width of the detonation reaction zone is from 0. 1 to 1 mm approximately, and it about equals the wavelength of interfaci...The characteristics of both the detonation and explosive loading are studied comparatively. The width of the detonation reaction zone is from 0. 1 to 1 mm approximately, and it about equals the wavelength of interfacial wave in explosive welding. Both of them increase with the increasing of the thickness and detonation velocity of the explosive. The pressure of the detonation reaction zone is also wavy. The amplitude of the interfacial wave is decided by the detonation loading and the rate of the strength of the base and drive plate materials, and the wavelength is equal to the width of detonation reaction zone. So, a new impaction mechanism of pressure and inlaying due to wavy loading is put forward.展开更多
In this study, we report on the degradation of microcystin-LR (MC-LR) by gas- liquid interracial discharge plasma. The influences of operation parameters such as average input voltage, electrode distance and gas flo...In this study, we report on the degradation of microcystin-LR (MC-LR) by gas- liquid interracial discharge plasma. The influences of operation parameters such as average input voltage, electrode distance and gas flow rate are investigated. Experimental results indicate that the input voltage and gas flow rate have positive influences on MC-LR degradation, while the electrode distance has a negative one. After 6 min discharge with 25 kV average input voltage and 60 L/h air aerati by discharge both in on, the degradation rate of MC-LR achieves 75.3%. distilled water and MC-LR solution are measured H202 and 03 generated Moreover, an emission spectroscopy is used as an indicator of the processes that take place on the gas-liquid boundary and inside plasma. Varied types of radicals (O, .OH, CO, 03, etc.) are proved to be present in the gas phase during gas-liquid interfacial discharge.展开更多
This theoretical study reports results on acoustic wave propagation along the interface of two half-spaces representing cubic crystals of both piezoelectric classes ?43m and 23 with strong piezoelectric effect. In sim...This theoretical study reports results on acoustic wave propagation along the interface of two half-spaces representing cubic crystals of both piezoelectric classes ?43m and 23 with strong piezoelectric effect. In similar configurations, the interfacial Maerfeld-Tournois waves can propagate along the interface of two transversely-isotropic materials of class 6 mm, in which the shear-horizontal surface acoustic waves (SH-SAWs) called the Bleustein-Gulyaev (BG) waves can also exist. Cubic piezoelectrics cannot support existence of the surface BG-waves, according to the recent report by Gulyaev and Hickernell. Hence, new interfacial SH-waves are studied in this paper concerning unique direction [101] of wave propagation in cubic crystals using different electrical boundary conditions (EBCs) of both metallized and non-metallized interfaces. The new interfacial SH-waves can always propagate along the interface of two identical piezoelectric crystals with opposite polarization. In this case, the calculated velocities for both EBCs coincide with the velocity of the ultrasonic surface Zakharenko wave (USZW) propagating in direction [101] on the metallized surface of a cubic piezoelectrics. It was also found that the new interfacial SH-waves can exist when wave propagation is along the interface of two dissimilar half-spaces, for instance, the piezoelectric cubic crystals Bi12SiO20 and Bi12GeO20. Several calculations are also carried out as examples. PACS: 51.40.+p, 62.65.+k, 68.35.Gy, 68.35.Iv, 68.60.Bs, 74.25.Ld.展开更多
The present paper is exposed theoretically to the influence on the dynamic stress intensity factor (DSIF) in the piezoelectric bi-materials model with two symmet- rically permeable interracial cracks near the edges ...The present paper is exposed theoretically to the influence on the dynamic stress intensity factor (DSIF) in the piezoelectric bi-materials model with two symmet- rically permeable interracial cracks near the edges of a circular cavity, subjected to the dynamic incident anti-plane shearing wave (SH-wave). An available theoretical method to dynamic analysis in the related research field is provided. The formulations are based on Green's function method. The DSIFs at the inner and outer tips of the left crack are obtained by solving the boundary value problems with the conjunction and crack- simulation technique. The numerical results are obtained by the FORTRAN language program and plotted to show the influence of the variations of the physical parameters, the structural geometry, and the wave frequencies of incident wave on the dimensionless DSIFs. Comparisons with previous work and between the inner and outer tips are con- cluded.展开更多
基金the Surface Project of Local Development in Science and Technology Guided by Central Government(No.2021ZYD0041)Natural Science Foundation of Shandong Province(No.ZR2019YQ24)+2 种基金Taishan Scholars and Young Experts Program of Shandong Province(No.tsqn202103057)the Qingchuang Talents Induction Program of Shandong Higher Education Institution(Research and Innovation Team of Structural-Functional Polymer Composites)Special Financial of Shandong Province(Structural Design of High-efficiency Electromagnetic Wave-absorbing Composite Materials and Construction of Shandong Provincial Talent Teams).
文摘Electromagnetic wave(EMW)absorbing materials have an irreplaceable position in the field of military stealth as well as in the field of electromagnetic pollution control.And in order to cope with the complex electromagnetic environment,the design of multifunctional and multiband high efficiency EMW absorbers remains a tremendous challenge.In this work,we designed a three-dimensional porous structure via the salt melt synthesis strategy to optimize the impedance matching of the absorber.Also,through interfacial engineering,a molybdenum carbide transition layer was introduced between the molybdenum selenide nanoparticles and the three-dimensional porous carbon matrix to improve the absorption behavior of the absorber.The analysis indicates that the number and components of the heterogeneous interfaces have a significant impact on the EMW absorption performance of the absorber due to mechanisms such as interfacial polarization and conduction loss introduced by interfacial engineering.Wherein,the prepared MoSe_(2)/MoC/PNC composites showed excellent EMW absorption performance in C,X,and Ku bands,especially exhibiting a reflection loss of−59.09 dB and an effective absorption bandwidth of 6.96 GHz at 1.9 mm.The coordination between structure and components endows the absorber with strong absorption,broad bandwidth,thin thickness,and multi-frequency absorption characteristics.Remarkably,it can effectively reinforce the marine anticorrosion property of the epoxy resin coating on Q235 steel substrate.This study contributes to a deeper understanding of the relationship between interfacial engineering and the performance of EMW absorbers,and provides a reference for the design of multifunctional,multiband EMW absorption materials.
文摘This study examines the stability regimes of three-dimensional interfacial gravity waves.The numerical results of the linear stability analysis extend the three-dimensional surface waves results of Ioualalen and Kharif(1994)to three-dimensional interfacial waves.An approach of the collocation type has been developed for this purpose.The equations of motion are reduced to an eigenvalue problem where the perturbations are spectrally decomposed into normal modes.The results obtained showed that the density ratio plays a stabilizing factor.In addition,the dominant instability is of three-dimensional structure,and it belongs to class I for all values of density ratio.
文摘Liquid film cooling as an advanced cooling technology is widely used in space vehicles.Stable operation of liquid film along the rocket combustion inner wall is crucial for thermal protection of rocket engines.The stability of liquid film is mainly determined by the characteristics of interfacial wave,which is rarely investigated right now.How to improve the stability of thin film has become a hot spot.In view of this,an advanced model based on the conventional Volume of Fluid(VOF)model is adopted to investigate the characteristics of interfacial wave in gas-liquid flow by using OpenFOAM,and the mechanism of formation and development of wave is revealed intuitively through numerical study.The effects from gas velocity,surface tension and dynamic viscosity of liquid(three factors)on the wave are studied respectively.It can be found that the gas velocity is critical to the formation and development of wave,and four modes of droplets generation are illustrated in this paper.Besides,a gas vortex near the gas-liquid interface can induce formation of wave easily,so changing the gas vortex state can regulate formation and development of wave.What’s more,the change rules of three factors influencing on the interfacial wave are obtained,and the surface tension has a negative effect on the formation and development of wave only when the surface tension coefficient is above the critical value,whereas the dynamic viscosity has a positive effect in this process.Lastly,the maximum height and maximum slope angle of wave will level off as the gas velocity increases.Meanwhile,the maximum slope angle of wave is usually no more than 38°,no matter what happens to the three factors.
基金the Knowledge Innovation Project of CAS(KJCX-YW-L02)the National 863 Project of China(2006AAO9A103-4)+1 种基金China National Oil Corporation in Beijing(CNOOC)the National Natural Science Foundation of China(10672056).
文摘In the present paper, we endeavor to accomplish a diagram, which demarcates the validity ranges for interfacial wave theories in a two-layer system, to meet the needs of design in ocean engineering. On the basis of the available solutions of periodic and solitary waves, we propose a guideline as principle to identify the validity regions of the interfacial wave theories in terms of wave period T, wave height H, upper layer thickness dl, and lower layer thick-ness d2, instead of only one parameter-water depth d as in the water surface wave circumstance. The diagram proposed here happens to be Le Mehaute's plot for free surface waves if water depth ratio r= d1/d2 approaches to infinity and the upper layer water density p1 to zero. On the contrary, the diagram for water surface waves can be used for two-layer interfacial waves if gravity acceleration g in it is replaced by the reduced gravity defined in this study under the condition of σ=(P2 - Pl)/P2 → 1.0 and r 〉 1.0. In the end, several figures of the validity ranges for various interfacial wavetheories in the two-layer fluid are given and compared with the results for surface waves.
文摘In the present research, the study of Song (2004) for random interfacial waves in two-layer fluid is extended to the case of fluids moving at different steady uniform speeds. The equations describing the random displacements of the density interface and the associated velocity potentials in two-layer fluid are solved to the second order, and the wave-wave interactions of the wave components and the interactions between the waves and currents are described. As expected, the extended solutions include those obtained by Song (2004) as one special case where the steady uniform currents of the two fluids are taken as zero, and the solutions reduce to those derived by Sharma and Dean (1979) for random surface waves if the density of the upper fluid and the current of the lower fluid are both taken as zero.
基金supported by the National Science Fund for Distinguished Young Scholars of China undercontract No 40425015 the Knowledge Innovation Programs of the Chinese Academy of Sciences under contract Nos KZCX1-YW-12and KZCX2-YW-201
文摘Interfacial waves and wave-induced tangential stress are studied for geostrophic small amplitude waves of two-layer fluid with a top free surface and a fiat bottom. The solutions were deduced from the general form of linear fluid dynamic equations of two-layer fluid under the f-plane approximation, and wave-induced tangential stress were estimated based on the solutions obtained. As expected, the solutions derived from the present work include as special cases those obtained by Sun et al. (2004. Science in China, Ser. D, 47(12): 1147-1154) for geostrophic small amplitude surface wave solutions and wave-induced tangential stress if the density of the upper layer is much smaller than that of the lower layer. The results show that the interface and the surface will oscillate synchronously, and the influence of the earth's rotation both on the surface wave solutions and the interfacial wave solutions should be considered.
文摘The problem of nonlinear instability of interfacial waves between two immiscible conducting cylindrical fluids of a weak Oldroyd 3-constant kind is studied. The system is assumed to be influenced by an axial magnetic field, where the effect of surface tension is taken into account. The analysis, based on the method of multiple scale in both space and time, includes the linear as well as the nonlinear effects. This scheme leads to imposing of two levels of the solvability conditions, which are used to construct like-nonlinear Schr6dinger equations (1-NLS) with complex coefficients. These equations generally describe the competition between nonlinearity and dispersion. The stability criteria are theoret- ically discussed and thereby stability diagrams are obtained for different sets of physical parameters. Proceeding to the nonlinear step of the problem, the results show the appearance of dual role of some physical parameters. Moreover, these effects depend on the wave kind, short or long, except for the ordinary viscosity parameter. The effect of the field on the system stability depends on the existence of viscosity and differs in the linear case of the problem from the nonlinear one. There is an obvious difference between the effect of the three Oldroyd constants on the system stability. New instability regions in the parameter space, which appear due to nonlinear effects, are shown.
基金financially supported by the National Natural Science Foundation of China(52373271)Science,Technology and Innovation Commission of Shenzhen Municipality under Grant(KCXFZ20201221173004012)+1 种基金National Key Research and Development Program of Shaanxi Province(No.2023-YBNY-271)Open Testing Foundation of the Analytical&Testing Center of Northwestern Polytechnical University(2023T019).
文摘Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significant challenging in regulating local phase evolution.Herein,accordion-shaped Co/Co_(3)O_(4)@N-doped carbon nanosheets(Co/Co_(3)O_(4)@NC)with gradient magnetic heterointerfaces have been fabricated via the cooperative high-temperature carbonization and lowtemperature oxidation process.The results indicate that the surface epitaxial growth of crystal Co_(3)O_(4) domains on local Co nanoparticles realizes the adjustment of magnetic-heteroatomic components,which are beneficial for optimizing impedance matching and interfacial polarization.Moreover,gradient magnetic heterointerfaces simultaneously realize magnetic coupling,and long-range magnetic diffraction.Specifically,the synthesized Co/Co_(3)O_(4)@NC absorbents display the strong electromagnetic wave attenuation capability of−53.5 dB at a thickness of 3.0 mm with an effective absorption bandwidth of 5.36 GHz,both are superior to those of single magnetic domains embedded in carbon matrix.This design concept provides us an inspiration in optimizing interfacial polarization,regulating magnetic coupling and promoting electromagnetic wave absorption.
基金Supported by the National Natural Science Foundation of China.
文摘By using two-parallel conductance probes,the instantaneous film thickness of gas-liquidtwo-phase flow within a horizontal plexiglass pipe of 50mm inner diameter was experimentallymeasured.The pipe was 6680mm long.Several wave patterns were distinguished through statisticalanalysis of signals of film thicknesses.Wave pattern maps were obtained and compared with resultsof former studies.The characteristics of the interfacial waves,such as time-averaged film thickness,wave height,wave propagation speed,wavelength and wave frequency,were systematically investigated.The effect of the exit structure of the test section on interfacial waves was experimentally examined.
基金The Science Research Project of Inner Mongolia University of Technology under contract No.ZD201613
文摘In this paper,we discuss the interfacial internal waves with a rigid boundary in a three-layer fluid system,where the density of the upper layer fluid is smaller than that of the lower layer.With the Lagrangian matching conditions at the interfaces,the first-order solutions,the second-order solutions and the third-order asymptotic solutions for the interfacial internal waves are obtained in the Lagrangian description using the perturbation method,and the mass transport velocity,the wave frequency,the mean level and the particle trajectory are also given.The results show that the discontinuities across the interfaces appear for the mass transport velocity,wave frequency and mean level,but we find that these discontinuities may disappear if the water depth ratio and the density ratio of the three layer fluids satisfy certain conditions.
基金financially supported by the Institut Teknologi Bandung Research(Grant No.107a/I1.C01/PL/2017)
文摘When pycnocline thickness of ocean density is relatively small, density stratification can be well represented as a two-layer system. In this article, a depth integrated model of the two-layer fluid with constant density is considered,and a variant of the edge-based non-hydrostatic numerical scheme is formulated. The resulting scheme is very efficient since it resolves the vertical fluid depth only in two layers. Despite using just two layers, the numerical dispersion is shown to agree with the analytical dispersion curves over a wide range of kd, where k is the wave number and d the water depth. The scheme was tested by simulating an interfacial solitary wave propagating over a flat bottom, as well as over a bottom step. On a laboratory scale, the formation of an interfacial wave is simulated,which also shows the interaction of wave with a triangular bathymetry. Then, a case study using the Lombok Strait topography is discussed, and the results show the development of an interfacial wave due to a strong current passing through a sill.
基金supported by the Nankai University, China and in part by NSERC Grant of Canada
文摘Dendritic pattern formation at the interface between liquid and solid is a commonly observed phenomenon in crystal growth and solidification process. The theoretical investigation of dendritic growth is one of the most profound and highly challenging subjects in the broad areas of interfacial pattern formation, condensed matter physics and materials science, preoccupying many researchers from various areas. Some longstanding key issues on this subject finally gained a breakthrough in the late of last century, via the 'Interracial Wave (IFW) Theory' on the ground of systematical global stability analysis of the basic state of dendritic growth. The original form of the IFW theory mainly focus on the investigation of various axi-symmetric unsteady perturbed modes solutions around the axi-symmetrie basic state of system of dendritic growth. In reality, the system may allow various non-axi-symmetric, unsteady perturbed states. Whether or not the system of dendritic growth allows some growing non-axi-symmetric modes? Will the stationary dendritic pattern be destroyed by some of such non-axi- symmetric modes? Or, in one word, what is the stability property of the system, once the non-axi-symmetric modes can be evoked? The answers for these questions are important for the solid foundation of IFW theory. The present work attempts to settle down these issues and develop a three-dimensional (3D) interfacial wave theory of dendritic growth. Our investigations verify that dendritic growth indeed allows a discrete set of non-axi-symmetric unstable global wave modes, which gives rise to a set of multiple arms spiral waves propagating along the Ivantsov's paraboloid.
基金supported by the National Natural Science Foundation of China (10972115)
文摘The long wave stability of core-annular flow of power-law fluids with an axial pressure gradient is investigated at low Reynolds number. The interface between the two fluids is populated with an insoluble surfactant. The analytic solution for the growth rate of perturbation is obtained with long wave approximation. We are mainly concerned with the effects of shear-thinning/thickening property and interfacial surfactant on the flow stability. The results show that the influence of shear-thinning/thickening property accounts to the change of the capillary number. For a clean interface, the shear-thinning property enhances the capillary instability when the interface is close to the pipe wall. The converse is true when the interface is close to the pipe centerline. For shear-thickening fluids, the situation is reversed. When the interface is close to the pipe centerline, the capillary instability can be restrained due to the influence of surfactant. A parameter set can be found under which the flow is linearly stable.
文摘The characteristics of both the detonation and explosive loading are studied comparatively. The width of the detonation reaction zone is from 0. 1 to 1 mm approximately, and it about equals the wavelength of interfacial wave in explosive welding. Both of them increase with the increasing of the thickness and detonation velocity of the explosive. The pressure of the detonation reaction zone is also wavy. The amplitude of the interfacial wave is decided by the detonation loading and the rate of the strength of the base and drive plate materials, and the wavelength is equal to the width of detonation reaction zone. So, a new impaction mechanism of pressure and inlaying due to wavy loading is put forward.
基金supported by National Natural Science Foundation of China(Nos.21006017 and 20906079)Zhejiang Provincial Natural Science Foundation of China(Grant Y5100356)
文摘In this study, we report on the degradation of microcystin-LR (MC-LR) by gas- liquid interracial discharge plasma. The influences of operation parameters such as average input voltage, electrode distance and gas flow rate are investigated. Experimental results indicate that the input voltage and gas flow rate have positive influences on MC-LR degradation, while the electrode distance has a negative one. After 6 min discharge with 25 kV average input voltage and 60 L/h air aerati by discharge both in on, the degradation rate of MC-LR achieves 75.3%. distilled water and MC-LR solution are measured H202 and 03 generated Moreover, an emission spectroscopy is used as an indicator of the processes that take place on the gas-liquid boundary and inside plasma. Varied types of radicals (O, .OH, CO, 03, etc.) are proved to be present in the gas phase during gas-liquid interfacial discharge.
文摘This theoretical study reports results on acoustic wave propagation along the interface of two half-spaces representing cubic crystals of both piezoelectric classes ?43m and 23 with strong piezoelectric effect. In similar configurations, the interfacial Maerfeld-Tournois waves can propagate along the interface of two transversely-isotropic materials of class 6 mm, in which the shear-horizontal surface acoustic waves (SH-SAWs) called the Bleustein-Gulyaev (BG) waves can also exist. Cubic piezoelectrics cannot support existence of the surface BG-waves, according to the recent report by Gulyaev and Hickernell. Hence, new interfacial SH-waves are studied in this paper concerning unique direction [101] of wave propagation in cubic crystals using different electrical boundary conditions (EBCs) of both metallized and non-metallized interfaces. The new interfacial SH-waves can always propagate along the interface of two identical piezoelectric crystals with opposite polarization. In this case, the calculated velocities for both EBCs coincide with the velocity of the ultrasonic surface Zakharenko wave (USZW) propagating in direction [101] on the metallized surface of a cubic piezoelectrics. It was also found that the new interfacial SH-waves can exist when wave propagation is along the interface of two dissimilar half-spaces, for instance, the piezoelectric cubic crystals Bi12SiO20 and Bi12GeO20. Several calculations are also carried out as examples. PACS: 51.40.+p, 62.65.+k, 68.35.Gy, 68.35.Iv, 68.60.Bs, 74.25.Ld.
基金supported by the National Natural Science Foundation of China(No.51108113)
文摘The present paper is exposed theoretically to the influence on the dynamic stress intensity factor (DSIF) in the piezoelectric bi-materials model with two symmet- rically permeable interracial cracks near the edges of a circular cavity, subjected to the dynamic incident anti-plane shearing wave (SH-wave). An available theoretical method to dynamic analysis in the related research field is provided. The formulations are based on Green's function method. The DSIFs at the inner and outer tips of the left crack are obtained by solving the boundary value problems with the conjunction and crack- simulation technique. The numerical results are obtained by the FORTRAN language program and plotted to show the influence of the variations of the physical parameters, the structural geometry, and the wave frequencies of incident wave on the dimensionless DSIFs. Comparisons with previous work and between the inner and outer tips are con- cluded.