We initially look at a non-singular universe representation of time, and of comparing a general formula of a cosmological Potential energy as given by Padmanbhan, with Weinberg’s Quintessence Potential energy. Isolat...We initially look at a non-singular universe representation of time, and of comparing a general formula of a cosmological Potential energy as given by Padmanbhan, with Weinberg’s Quintessence Potential energy. Isolating a given time component which may serve as an introduction. We then compare this to when , and seeing what the time component then allows as far as available initial energy, the scale factor a(t) and ø, then finally admissible frequency, for Pre Planckian process generated Gravitational waves.展开更多
The possibility that quantum mechanics is founded on non-metric space has been previously introduced as an alternative consequence of Bell inequalities violation. This work develops the concept further by an analysis ...The possibility that quantum mechanics is founded on non-metric space has been previously introduced as an alternative consequence of Bell inequalities violation. This work develops the concept further by an analysis of the iconic Heisenberg gedanken experiment. No lower bound is found in the gedanken uncertainly relation for a non-metric spatial background. This result has the fundamental consequence that the quantum particle trajectory is retained in non-metric space and time. Assignment of measurement number-values to unmeasured incompatible variables is found to be mathematically incorrect. The current disagreement between different formulations of the empirically verified error-disturbance relations can be explained as a consequence of the structure of space. Quantum contextuality can likewise be explained geometrically. An alternative analysis of the extendedEPRperfect anti-correlation configuration is given. The consensus that local causality is the sole assumption is found to be incorrect. There is also the additional assumption of orientation independence. Inequalities violation does not therefore mandate rejection of local causality. Violation of the assumption of orientation independence implies rejection of metric, non-contextual variables algebraically representing physical quantities.展开更多
文摘We initially look at a non-singular universe representation of time, and of comparing a general formula of a cosmological Potential energy as given by Padmanbhan, with Weinberg’s Quintessence Potential energy. Isolating a given time component which may serve as an introduction. We then compare this to when , and seeing what the time component then allows as far as available initial energy, the scale factor a(t) and ø, then finally admissible frequency, for Pre Planckian process generated Gravitational waves.
文摘The possibility that quantum mechanics is founded on non-metric space has been previously introduced as an alternative consequence of Bell inequalities violation. This work develops the concept further by an analysis of the iconic Heisenberg gedanken experiment. No lower bound is found in the gedanken uncertainly relation for a non-metric spatial background. This result has the fundamental consequence that the quantum particle trajectory is retained in non-metric space and time. Assignment of measurement number-values to unmeasured incompatible variables is found to be mathematically incorrect. The current disagreement between different formulations of the empirically verified error-disturbance relations can be explained as a consequence of the structure of space. Quantum contextuality can likewise be explained geometrically. An alternative analysis of the extendedEPRperfect anti-correlation configuration is given. The consensus that local causality is the sole assumption is found to be incorrect. There is also the additional assumption of orientation independence. Inequalities violation does not therefore mandate rejection of local causality. Violation of the assumption of orientation independence implies rejection of metric, non-contextual variables algebraically representing physical quantities.