期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Gene engineering in swine for agriculture
1
作者 WANG Yan-fang HUANG Jiao-jiao ZHAO Jian-guo 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第12期2792-2804,共13页
Domestic pigs are the second most important source of meat world-wide, and the genetic improvement of economic traits, such as meat production, growth, and disease resistance, is a critical point for efficient product... Domestic pigs are the second most important source of meat world-wide, and the genetic improvement of economic traits, such as meat production, growth, and disease resistance, is a critical point for efficient production in pigs. Through conventional breeding and selection programs in pigs, which are painstakingly slow processes, some economic traits, such as growth and backfat, have been greatly improved over the past several decades. However, the improvement of many polygenetic traits is still very slow and challenging to be improved by conventional breeding strategies. The development of reproductive knowledge and a variety of techniques, including foreign gene transfer strategies, somatic cell nuclear transfer(SCNT) and particularly, recently developed nuclease-mediated genome editing tools, has provided efficient ways to produce genetically modified(GM) pigs for the dramatic improvement of economic traits. In this review, we briefly discuss the progress of genomic markers used in pig breeding program, trace the history of genetic engineering, mainly focusing on the progress of recently developed genome editing tools, and summarize the GM pigs which have been generated to aim at the agricultural purposes. We also discuss the specific challenges facing application of gene engineering in pig breeding, and future prospects. 展开更多
关键词 gene engineering genome editing PIG agricultural application
下载PDF
Molecular Cloning of a Cytosolic G6PDH Gene from Populus Suaveolens and Its Expression to Improve the Cold Resistance of Tobacco Plants
2
作者 LIN Yuan-zhen1,2,GUO Hai3,ZHANG Zhi-yi2,LIN Shan-zhi2 (1. College of Forestry,South China Agricultural University,Guangzhou Guangdong 510642,China 2. Key Laboratory for Genetics and Breeding in Forest Trees and Ornamental Plants,MOE,Beijing Forestry University,Beijing 100083,China 3. Plant Materials Center for Soil and Water Conservation,Ministry of Water Resources,Beijing100038,China) 《冰川冻土》 CSCD 北大核心 2009年第6期1178-1185,共8页
Glucose-6-phosphate dehydrogenase (G6PDH,EC 1.1.1.49) is the first and main regulated enzyme of oxidative pentose phosphate pathway (OPPP),catalyzing the conversion of glucose-6-phosphate to 6-phospho-gluconolactone a... Glucose-6-phosphate dehydrogenase (G6PDH,EC 1.1.1.49) is the first and main regulated enzyme of oxidative pentose phosphate pathway (OPPP),catalyzing the conversion of glucose-6-phosphate to 6-phospho-gluconolactone and playing important roles in the growth and development of plants. It is preciously reported that the enhancement of freezing resistance of Populus suaveolenscuttings is clear related to the distinct increase in cytosolic G6PDH activity. Here,a 1697 bp cDNA fragment (PsG6PDH) is amplified by RT-PCR from cold-induced total RNA of the freezing-tolerant P. suaveolens. A sequence analysis showed that PsG6PDH coding region had 1 530 bp and encoded 510 predicted amino acid residues. Genomic Southern analysis revealed that the isoform is encoded by a few copies of the gene in the poplar genome. The cloned gene PsG6PDHis cloned into binary vector pBI121 and used to transform tobacco. PCR and Southern blotting results verified integration of this gene into the genome of tobacco. Moreover,cold treatment experiments and membrane defense enzymeactivity analysis confirmed that overexpression of the PsG6PDHgene could enhance the tolerance to cold or frigid stresses in transgenic plants. 展开更多
关键词 Populus suaveolens glucose-6-phosphate dehydrogenase cold resistance gene engineering
下载PDF
Gene-guided OX40L anchoring to tumor cells for synergetic tumor“self-killing”immunotherapy
3
作者 Lin Lin Yingying Hu +4 位作者 Zhaopei Guo Jie Chen Pingjie Sun Huayu Tian Xuesi Chen 《Bioactive Materials》 SCIE CSCD 2023年第7期689-700,共12页
The low objective response rates and severe side effects largely limit the clinical outcomes of immune checkpoint blockade(ICB)therapy.Here,a tumor“self-killing”therapy based on gene-guided OX40L anchoring to tumor ... The low objective response rates and severe side effects largely limit the clinical outcomes of immune checkpoint blockade(ICB)therapy.Here,a tumor“self-killing”therapy based on gene-guided OX40L anchoring to tumor cell membrane was reported to boost ICB therapy.We developed a highly efficient delivery system HA/PEI-KT(HKT)to co-deliver the OX40L plasmids and unmethylated CG-enriched oligodeoxynucleotide(CpG).On the one hand,CpG induced the expression of OX40 on T cells within tumors.On the other hand,OX40L plasmids achieved the OX40L anchoring on the tumor cell membrane to next promote T cells responses via OX40/OX40L axis.Such synergistic tumor“self-killing”strategy finally turned“cold”tumors to“hot”,to sensitize tumors to programmed cell death protein 1/programmed cell death ligand 1(PD-1/PD-L1)blockade therapy,and promoted an immune-mediated tumor regression in both B16F10 and 4T1 tumor models,with prevention of tumor recurrence and metastasis.To avoid the side effects,the gene-guided OX40L anchoring and PD-L1 silencing was proposed to replace the existing antibody therapy,which showed negligible toxicity in vivo.Our work provided a new possibility for tumor“self-killing”immunotherapy to treated various solid tumors. 展开更多
关键词 OX40L anchoring to tumor cell membrane gene engineering Tumor immunotherapy Anti-PD therapy Tumor relapse and metastasis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部