期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
关于Gorenstein FP_(n)-内射模
1
作者 昌文浩 周德旭 《闽南师范大学学报(自然科学版)》 2023年第4期102-106,共5页
引入(强)Gorenstein FP_(n)-内射模,得到了(强)Gorenstein FP_(n)-内射模的若干性质和刻画,并研究了左GFP_(n)-正则环的等价性质,证明了环R为左GFP_(n)-正则环当且仅当每个投射左R-模是FP_(n)-内射的且每个投射维数有限的n-表现左R-模... 引入(强)Gorenstein FP_(n)-内射模,得到了(强)Gorenstein FP_(n)-内射模的若干性质和刻画,并研究了左GFP_(n)-正则环的等价性质,证明了环R为左GFP_(n)-正则环当且仅当每个投射左R-模是FP_(n)-内射的且每个投射维数有限的n-表现左R-模都是投射的. 展开更多
关键词 fp_(n)-内射模 gorenstein fp_(n)内射模 gorenstein fp_(n)-内射模 左Gfp_(n)-正则环
下载PDF
Gorenstein FP_(n)-内射模及维数
2
作者 程志强 赵国强 《杭州电子科技大学学报(自然科学版)》 2022年第5期98-102,共5页
运用相对同调代数的方法,推广了Gorenstein FP-内射模,提出Gorenstein FP_(n)-内射模和Gorenstein FP_(n)-内射维数的概念,并讨论它们的同调性质。当环是n-凝聚环和GFP_(n)I-封闭环时,得到Gorenstein FP_(n)-内射模的内射余可解性和Gore... 运用相对同调代数的方法,推广了Gorenstein FP-内射模,提出Gorenstein FP_(n)-内射模和Gorenstein FP_(n)-内射维数的概念,并讨论它们的同调性质。当环是n-凝聚环和GFP_(n)I-封闭环时,得到Gorenstein FP_(n)-内射模的内射余可解性和Gorenstein FP_(n)-内射维数的等价刻画。 展开更多
关键词 gorenstein fp_(n)-内射模 gorenstein fp_(n)-内射维数 n-凝聚环 Gfp_(n)I-封闭环
下载PDF
Generalized Gorenstein Modules 被引量:1
3
作者 Alina Iacob 《Algebra Colloquium》 SCIE CSCD 2022年第4期651-662,共12页
We introduce a generalization of the Gorenstein injective modules:the Gorenstein FPn-injective modules(denoted by GI_(n)).They are the cycles of the exact complexes of injective modules that remain exact when we apply... We introduce a generalization of the Gorenstein injective modules:the Gorenstein FPn-injective modules(denoted by GI_(n)).They are the cycles of the exact complexes of injective modules that remain exact when we apply a functor Hom(A,-),with A any FP_(n)-injective module.Thus,GL_(o)is the class of classical Gorenstein injective modules,and GI_(1)is the class of Ding injective modules.We prove that over any ring R,for any n≥2,the class GI_(n)is the right half of a perfect cotorsion pair,and therefore it is an enveloping class.For n=1 we show that GI_(1)(i.e.,the Ding injectives)forms the right half of a hereditary cotorsion pair.If moreover the ring R is coherent,then the Ding injective modules form an enveloping class.We also define the dual notion,that of Gorenstein FP_(n)-projectives(denoted by GP_(n)).They generalize the Ding projective modules,and so,the Gorenstein projective modules.We prove that for any n≥2 the class GP_(n)is the left half of a complete hereditary cotorsion pair,and therefore it is special precovering. 展开更多
关键词 gorenstein fp_(n)-injective modules gorenstein fp_(n)-projective modules Ding injective modules Ding projective modules
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部