期刊文献+
共找到123篇文章
< 1 2 7 >
每页显示 20 50 100
Stochastic Ranking Improved Teaching-Learning and Adaptive Grasshopper Optimization Algorithm-Based Clustering Scheme for Augmenting Network Lifetime in WSNs
1
作者 N Tamilarasan SB Lenin +1 位作者 P Mukunthan NC Sendhilkumar 《China Communications》 SCIE CSCD 2024年第9期159-178,共20页
In Wireless Sensor Networks(WSNs),Clustering process is widely utilized for increasing the lifespan with sustained energy stability during data transmission.Several clustering protocols were devised for extending netw... In Wireless Sensor Networks(WSNs),Clustering process is widely utilized for increasing the lifespan with sustained energy stability during data transmission.Several clustering protocols were devised for extending network lifetime,but most of them failed in handling the problem of fixed clustering,static rounds,and inadequate Cluster Head(CH)selection criteria which consumes more energy.In this paper,Stochastic Ranking Improved Teaching-Learning and Adaptive Grasshopper Optimization Algorithm(SRITL-AGOA)-based Clustering Scheme for energy stabilization and extending network lifespan.This SRITL-AGOA selected CH depending on the weightage of factors such as node mobility degree,neighbour's density distance to sink,single-hop or multihop communication and Residual Energy(RE)that directly influences the energy consumption of sensor nodes.In specific,Grasshopper Optimization Algorithm(GOA)is improved through tangent-based nonlinear strategy for enhancing the ability of global optimization.On the other hand,stochastic ranking and violation constraint handling strategies are embedded into Teaching-Learning-based Optimization Algorithm(TLOA)for improving its exploitation tendencies.Then,SR and VCH improved TLOA is embedded into the exploitation phase of AGOA for selecting better CH by maintaining better balance amid exploration and exploitation.Simulation results confirmed that the proposed SRITL-AGOA improved throughput by 21.86%,network stability by 18.94%,load balancing by 16.14%with minimized energy depletion by19.21%,compared to the competitive CH selection approaches. 展开更多
关键词 Adaptive grasshopper optimization algorithm(Agoa) Cluster Head(CH) network lifetime Teaching-Learning-based optimization algorithm(TLOA) Wireless Sensor Networks(WSNs)
下载PDF
E-mail Spam Classification Using Grasshopper Optimization Algorithm and Neural Networks 被引量:1
2
作者 Sanaa A.A.Ghaleb Mumtazimah Mohamad +1 位作者 Syed Abdullah Fadzli Waheed A.H.M.Ghanem 《Computers, Materials & Continua》 SCIE EI 2022年第6期4749-4766,共18页
Spam has turned into a big predicament these days,due to the increase in the number of spam emails,as the recipient regularly receives piles of emails.Not only is spam wasting users’time and bandwidth.In addition,it ... Spam has turned into a big predicament these days,due to the increase in the number of spam emails,as the recipient regularly receives piles of emails.Not only is spam wasting users’time and bandwidth.In addition,it limits the storage space of the email box as well as the disk space.Thus,spam detection is a challenge for individuals and organizations alike.To advance spam email detection,this work proposes a new spam detection approach,using the grasshopper optimization algorithm(GOA)in training a multilayer perceptron(MLP)classifier for categorizing emails as ham and spam.Hence,MLP and GOA produce an artificial neural network(ANN)model,referred to(GOAMLP).Two corpora are applied Spam Base and UK-2011Web spam for this approach.Finally,the finding represents evidence that the proposed spam detection approach has achieved a better level in spam detection than the status of the art. 展开更多
关键词 grasshopper optimization algorithm multilayer perceptron artificial neural network spam detection approach
下载PDF
Optimization of Interval Type-2 Fuzzy Logic System Using Grasshopper Optimization Algorithm
3
作者 Saima Hassan Mojtaba Ahmadieh Khanesar +3 位作者 Nazar Kalaf Hussein Samir Brahim Belhaouari Usman Amjad Wali Khan Mashwani 《Computers, Materials & Continua》 SCIE EI 2022年第5期3513-3531,共19页
The estimation of the fuzzy membership function parameters for interval type 2 fuzzy logic system(IT2-FLS)is a challenging task in the presence of uncertainty and imprecision.Grasshopper optimization algorithm(GOA)is ... The estimation of the fuzzy membership function parameters for interval type 2 fuzzy logic system(IT2-FLS)is a challenging task in the presence of uncertainty and imprecision.Grasshopper optimization algorithm(GOA)is a fresh population based meta-heuristic algorithm that mimics the swarming behavior of grasshoppers in nature,which has good convergence ability towards optima.The main objective of this paper is to apply GOA to estimate the optimal parameters of the Gaussian membership function in an IT2-FLS.The antecedent part parameters(Gaussian membership function parameters)are encoded as a population of artificial swarm of grasshoppers and optimized using its algorithm.Tuning of the consequent part parameters are accomplished using extreme learning machine.The optimized IT2-FLS(GOAIT2FELM)obtained the optimal premise parameters based on tuned consequent part parameters and is then applied on the Australian national electricity market data for the forecasting of electricity loads and prices.The forecasting performance of the proposed model is compared with other population-based optimized IT2-FLS including genetic algorithm and artificial bee colony optimization algorithm.Analysis of the performance,on the same data-sets,reveals that the proposed GOAIT2FELM could be a better approach for improving the accuracy of the IT2-FLS as compared to other variants of the optimized IT2-FLS. 展开更多
关键词 Parameter optimization grasshopper optimization algorithm interval type-2 fuzzy logic system extreme learning machine electricity market forecasting
下载PDF
改进MOGOA及其在风储容量优化配置中的应用 被引量:3
4
作者 王欣 谭永怡 秦斌 《电力科学与技术学报》 CAS CSCD 北大核心 2024年第2期159-169,共11页
针对传统方法在风储容量优化配置过程中求解精度低、效率低等问题,提出一种改进多目标蝗虫优化算法(improved multi-objective grasshopper optimization algorithm,IMOGOA),采用Fuch混沌映射、余弦自适应参数和莱维飞行三种策略进行改... 针对传统方法在风储容量优化配置过程中求解精度低、效率低等问题,提出一种改进多目标蝗虫优化算法(improved multi-objective grasshopper optimization algorithm,IMOGOA),采用Fuch混沌映射、余弦自适应参数和莱维飞行三种策略进行改进,使算法的初始解分布更均匀、全局探索和局部开发更协调,同时增强了算法跳出局部最优的能力。对改进算法和多目标粒子群等多个算法进行性能测试对比,实验结果表明改进算法具有更好的寻优精度和稳定性。将该算法应用于风电场混合储能系统容量优化配置,对比其他算法,改进算法能够快速找出Pareto最优解集,在满足系统要求的同时,最大限度降低混合储能系统成本,可以验证算法改进策略的有效性和应用于实际优化问题的适用性。 展开更多
关键词 风电场 储能容量优化配置 蝗虫优化算法 Fuch混沌映射 莱维飞行
下载PDF
三维荧光光谱结合IGOA-SVM分类鉴别油类污染物 被引量:2
5
作者 程朋飞 朱燕萍 +2 位作者 潘金燕 崔传金 张怡 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第4期1031-1038,共8页
溢油污染是一种典型的环境污染形式,通过多重渠道危害着生物多样性和人类自身安全。因此,针对油类污染物自身组成成分及其特性,采用多种方法相结合的方式,对其进行实时、精确、高效的检测对生态环境监测具有重要意义。三维荧光光谱分析... 溢油污染是一种典型的环境污染形式,通过多重渠道危害着生物多样性和人类自身安全。因此,针对油类污染物自身组成成分及其特性,采用多种方法相结合的方式,对其进行实时、精确、高效的检测对生态环境监测具有重要意义。三维荧光光谱分析法以其检测精度高、实时性好、操作简便、干扰性小等优势在荧光类物质检测领域应用十分广泛。三维荧光光谱结合支持向量机等算法在物质分类鉴别和浓度预测方面取得较好的成效,但仍存在收敛速度慢、易陷入局部最优等缺陷。将三维荧光光谱与改进蚱蜢优化支持向量机算法(IGOA-SVM)相结合,提出一种对油类污染物分类鉴别的新方法。首先,以0.1 mol·L-1十二烷基硫酸钠溶液作为溶剂,将0#柴油、95#汽油和煤油以不同浓度配比配制成0#柴油和95#汽油、0#柴油和煤油两组分混合样本20个和18个,三组分混合样本20个,各取一半为训练集和测试集。然后,采用F-7000荧光光谱仪采集混合溶液的荧光数据,分析三种油的标准溶液及配制的混合溶液,发现荧光光谱均在一定范围内存在不同程度的重叠现象,仅利用光谱检测无法准确鉴别。最后,结合混沌初始化、精英优化算法和差分进化算法对蚱蜢优化算法进行改进,提取激发波长270 nm,发射波长270~450 nm范围内的荧光峰数据作为训练的输入值,以三种分类标签作为输出,将数据分别输入到蚱蜢优化支持向量机算法(GOA-SVM)、粒子群优化支持向量机算法(PSO-SVM)和遗传优化支持向量机算法(GA-SVM)中进行训练,IGOA-SVM模型在收敛速度、稳定性和跳出局部最优能力上明显优于GOA-SVM、PSO-SVM和GA-SVM,为油类污染物的准确鉴别提供了一种新思路。 展开更多
关键词 三维荧光光谱 改进蚱蜢优化算法 支持向量机 石油类污染物
下载PDF
基于IGOA-SVM的变压器故障诊断研究
6
作者 李致远 邵长春 王致诚 《广西电力》 2024年第1期12-18,共7页
基本蝗虫优化算法(GOA)容易陷入局部最优。为提高变压器故障诊断精度,本文提出一个采用改进的蝗虫优化算法结合支持向量机技术(IGOA-SVM)的变压器故障诊断模型。首先,利用混沌策略初始化蝗虫种群,以提高初始种群质量和搜索效率。然后,... 基本蝗虫优化算法(GOA)容易陷入局部最优。为提高变压器故障诊断精度,本文提出一个采用改进的蝗虫优化算法结合支持向量机技术(IGOA-SVM)的变压器故障诊断模型。首先,利用混沌策略初始化蝗虫种群,以提高初始种群质量和搜索效率。然后,采用非线性递减权重,以平衡算法的局部探索和全局探索能力。最后,利用改进的蝗虫优化算法(IGOA)对SVM的惩罚系数和核函数参数进行优化,建立了基于溶解气体分析的IGOA-SVM变压器故障诊断模型,并通过与GA-SVM、 PSO-SVM和GOA-SVM三种故障诊断模型的比较,验证了IGOA-SVM变压器故障诊断模型的有效性和优越性。 展开更多
关键词 故障诊断模型 溶解气体分析 改进蝗虫优化算法 支持向量机
下载PDF
基于IGOA-LightGBM模型的锂电池荷电状态预测
7
作者 任小强 何青 聂清彬 《广州城市职业学院学报》 2024年第1期91-95,共5页
针对锂电池荷电状态(SOC)无法直接测量的问题,提出一种使用改进蝗虫优化算法(IGOA)优化轻量级梯度提升机器学习(LightGBM)的SOC预测模型。首先,引入非线性递减系数、自适应权重系数和位置更新策略改进标准GOA算法,获取最优种群个体。其... 针对锂电池荷电状态(SOC)无法直接测量的问题,提出一种使用改进蝗虫优化算法(IGOA)优化轻量级梯度提升机器学习(LightGBM)的SOC预测模型。首先,引入非线性递减系数、自适应权重系数和位置更新策略改进标准GOA算法,获取最优种群个体。其次,利用IGOA寻找LightGBM算法中的最优超参数组合,建立IGOA-LightGBM预测模型;最后,在马里兰大学提供的电池数据集上,将IGOA-LightGBM、LightGBM和BP神经网络模型的预测结果进行对比。实验结果表明,IGOA-LightGBM模型表现最优,平均绝对误差、平均绝对值百分比误差和均方根误差分别为0.013%、0.022%、0.018%,具备良好的预测精度及工程研究意义。 展开更多
关键词 锂离子电池 荷电状态 蝗虫优化算法 轻量级梯度提升机
下载PDF
新能源汽车驱动电机冷却系统劣化故障预测
8
作者 柳炽伟 黄韵迪 《汽车安全与节能学报》 北大核心 2025年第2期277-285,共9页
提出一种主成分分析及粒子群优化支持向量机(PCA-GOA-LSSVM)的多分类器模型,用于尽早检测和预测新能源汽车驱动电机冷却系统的劣化,减少因冷却液温度过高导致的电机功率限制或停机状况的发生。其中主成分分析法(PCA)用于对故障特征进行... 提出一种主成分分析及粒子群优化支持向量机(PCA-GOA-LSSVM)的多分类器模型,用于尽早检测和预测新能源汽车驱动电机冷却系统的劣化,减少因冷却液温度过高导致的电机功率限制或停机状况的发生。其中主成分分析法(PCA)用于对故障特征进行降维重构处理,蝗虫算法(GOA)用来优化最小二乘支持向量机(LSSVM)的参数。通过实车故障试验采集样本数据,分别输入至LSSVM预测模型、PCA-PSO-SVM及PCA-GOA-LSSVM模型,进行对比测试。结果表明:基于PCA-GOA-LSSVM的多分类器预测模型准确率达91.41%、精确率达86.25%,高于对比的预测模型,可准确提醒及时维护车辆及有效判断故障类型;该模型能够用于新能源汽车驱动电机冷却系统性能劣化预测和故障诊断中。 展开更多
关键词 新能源汽车 驱动电机冷却系统 故障预测 最小二乘支持向量机(LSSVM) 蝗虫算法(goa) 主成分分析(PCA)
下载PDF
具有自学习和邻域搜索能力的改进蚱蜢优化算法及红外图像分割应用
9
作者 张云 吴强 《计算机应用与软件》 北大核心 2025年第2期270-279,共10页
传统图像分割方法处理电力设备红外图像分割问题时存在精度低、诊断效率差的不足。提出一种具有自学习和邻域搜索能力的改进蚱蜢优化算法IGOA,并结合Cross熵应用于电力设备红外图像分割。为了提升标准蚱蜢优化算法GOA的寻优精度和寻优速... 传统图像分割方法处理电力设备红外图像分割问题时存在精度低、诊断效率差的不足。提出一种具有自学习和邻域搜索能力的改进蚱蜢优化算法IGOA,并结合Cross熵应用于电力设备红外图像分割。为了提升标准蚱蜢优化算法GOA的寻优精度和寻优速率,利用佳点集、伪对立学习、配对自学习及邻域搜索策略对GOA的全局寻优能力进行改进。然后以Cross熵作为评估标准,构建红外图像分割模型IGOA-Cross。利用四种常规电力设备红外图像进行实验分析,结果表明:与对比模型相比,该分割模型误分率更低,峰值信噪比和结构相似度更高,能够处理背景非均匀、噪声较大的红外图像分割,分割效率和精度都有提升。 展开更多
关键词 红外图像分割 邻域搜索 伪对立学习 蚱蜢优化算法 电力设备
下载PDF
数据中心多能互补分布式能源系统设计与运行优化研究
10
作者 任效效 李小龙 +4 位作者 薛凯 吴炫 韩小渠 王进仕 严俊杰 《西安交通大学学报》 EI CAS 北大核心 2025年第1期93-104,共12页
为实现数据中心的低碳转型和能效提升,提出了一种集成多种可再生能源和储能设备的多能互补分布式能源系统作为其供能系统。建立了包含生命周期成本、碳排放、能耗、电网购电率和热量浪费率等指标的优化目标体系。制定了两种考虑负荷特... 为实现数据中心的低碳转型和能效提升,提出了一种集成多种可再生能源和储能设备的多能互补分布式能源系统作为其供能系统。建立了包含生命周期成本、碳排放、能耗、电网购电率和热量浪费率等指标的优化目标体系。制定了两种考虑负荷特征的运行策略,采用改进的多目标蝗虫优化算法对系统容量配置进行求解。为了分析优化目标和运行策略对系统优化的影响,通过组合不同优化目标和运行策略形成了多种优化设计方案,采用层次分析法和熵权法确定评价指标的权重,并利用多准则妥协解排序法进行评价排序。针对青海省某数据中心的案例,获得其能源系统的优化设计与运行方案。研究表明:运行策略主要影响吸收式制冷机和地源热泵的容量,而优化目标主要影响储能设备的容量;在相同的运行策略下,增加优化目标可提升系统的综合性能;对于不同的方案,生命周期成本、碳排放、能耗等基础优化目标值变化较小,而电网购电率和热量浪费率变化较大;通过实施五目标优化,即在基础优化目标的基础上增加热量浪费率、电网购电率,系统的综合性能得到了显著提升,其中热量浪费率和电网购电率分别降低了62.30%和25.92%,可再生能源发电占比增加了2%。 展开更多
关键词 数据中心 多能互补分布式能源系统 优化设计 运行策略 多目标蝗虫优化算法
下载PDF
一种GOA优化SOM神经网络的VP型倾斜仪故障智能诊断方法 被引量:6
11
作者 庞聪 马武刚 +4 位作者 李查玮 龚燕民 刘晓磊 江勇 廖成旺 《大地测量与地球动力学》 CSCD 北大核心 2023年第3期322-326,共5页
提出一种VP型倾斜仪故障智能诊断方法。利用经验模态分解(EMD)将归一化故障信号分解为6个本征模态函数(IMF),分别计算其近似熵,构建EMD多尺度近似熵输入矩阵;结合蝗虫优化算法(GOA)对自组织特征映射(SOM)神经网络的参数进行优化,将得到... 提出一种VP型倾斜仪故障智能诊断方法。利用经验模态分解(EMD)将归一化故障信号分解为6个本征模态函数(IMF),分别计算其近似熵,构建EMD多尺度近似熵输入矩阵;结合蝗虫优化算法(GOA)对自组织特征映射(SOM)神经网络的参数进行优化,将得到的GOA最优值嵌入到SOM模型中,组建GOA-SOM诊断模型。应用诊断测试集得到诊断目标的聚类标签值,将其与训练集的聚类标签以及真实故障类型进行比对,得到故障诊断结果。结果证明,GOA-SOM模型在100次随机抽样条件下的诊断正确率均值和标准差分别为99.329 7%、1.218 8,优于传统诊断模型。 展开更多
关键词 倾斜仪故障诊断 经验模态分解 蝗虫优化算法 自组织特征映射神经网络 多尺度近似熵
下载PDF
基于改进MOGOA的无人机群航迹规划研究 被引量:5
12
作者 陈涛 李由之 黄湘松 《天津大学学报(自然科学与工程技术版)》 EI CSCD 北大核心 2020年第9期967-975,共9页
针对电子侦察系统中反辐射无人机群进行辐射源无源定位时机群的编队形式会对定位精度产生影响的问题,将克拉美-罗界(Cramer-Rao lower bound,CRLB)作为定位精度方面的优化目标,与其他优化目标、约束一起引入机群的航迹规划中,使无人机... 针对电子侦察系统中反辐射无人机群进行辐射源无源定位时机群的编队形式会对定位精度产生影响的问题,将克拉美-罗界(Cramer-Rao lower bound,CRLB)作为定位精度方面的优化目标,与其他优化目标、约束一起引入机群的航迹规划中,使无人机群运动过程中保持良好编队,确保无源定位精度.文中针对多优化目标复杂环境中航迹规划算法寻优能力不高的问题,提出了一种基于改进多目标蝗虫算法(IMOGOA)的无人机群3维航迹规划方法,通过对MOGOA的选择方式、收敛参数进行改进从而提高算法的收敛性能以及全局搜索性能.首先,建立无人机群航迹规划的运动学模型,并引入距离约束,除定位精度以外还引入了路程、威胁代价等作为航迹规划的优化目标函数,然后,对改进多目标蝗虫算法进行详细说明,最后设计基于IMOGOA的无人机群航迹规划方案的算法流程,并在设定场景中对该算法的性能进行了仿真分析.结果表明,所提出的IMOGOA能够成功地规划出无人机群从初始位置到辐射源位置处的3维航迹,同时使无人机群在运动过程中保持良好的定位精度,经IMOGOA规划的机群编队定位精度最高可达1.2%,性能明显优于正方形编队和随机编队,并通过将IMOGOA与原始蝗虫算法(GOA)、原始多目标蝗虫算法进行对比,结果表明IMOGOA的收敛速度比MOGOA快11.1%,搜索性能相较GOA提升13.8%. 展开更多
关键词 反辐射无人机 航迹规划 多目标蝗虫算法 定位精度
下载PDF
基于RF-GOA-RVM的海底管道腐蚀速率预测 被引量:4
13
作者 骆正山 杨枚桧 +1 位作者 王小完 张新生 《消防科学与技术》 CAS 北大核心 2021年第9期1337-1340,共4页
针对油气管道腐蚀预测模型参数确定困难及预测精度不高等问题,提出一种基于RF-GOA-RVM的腐蚀速率预测新方法。运用随机森林(RF)筛选海底管道腐蚀影响因素,确定腐蚀主要因素;用蝗虫算法(GOA)优化相关向量机(RVM)参数,预测管道腐蚀速率。... 针对油气管道腐蚀预测模型参数确定困难及预测精度不高等问题,提出一种基于RF-GOA-RVM的腐蚀速率预测新方法。运用随机森林(RF)筛选海底管道腐蚀影响因素,确定腐蚀主要因素;用蝗虫算法(GOA)优化相关向量机(RVM)参数,预测管道腐蚀速率。仿真实验表明:与粒子群算法-相关向量机(PSO-RVM)和RVM相比,RF-GOA-RVM模型稳定性更好,预测精度更高,可为海底管道腐蚀失效预测提供决策依据。 展开更多
关键词 相关向量机 蝗虫优化算法 随机森林 海底管道 腐蚀速率预测
下载PDF
基于混沌理论和GOA-K-means算法的有载分接开关状态特征分析计算方法 被引量:20
14
作者 马宏忠 严岩 《电工技术学报》 EI CSCD 北大核心 2021年第7期1399-1406,共8页
为更加准确有效地监测变压器有载分接开关(OLTC)机械状态,针对传统基于K-means的监测方法聚类效果易受其初始聚类中心选择的影响,该文提出一种基于蝗虫算法(GOA)和K-means相结合的OLTC机械状态监测方法。首先针对OLTC振动信号的非线性... 为更加准确有效地监测变压器有载分接开关(OLTC)机械状态,针对传统基于K-means的监测方法聚类效果易受其初始聚类中心选择的影响,该文提出一种基于蝗虫算法(GOA)和K-means相结合的OLTC机械状态监测方法。首先针对OLTC振动信号的非线性和混沌特性,利用P-G法和互信息值法计算嵌入维数和延迟时间,对实测的OLTC振动信号进行相空间重构;其次应用Kolmogorov熵对重构后的振动信号混沌特性进行判断;最后为提高聚类精度,针对K-means对初始聚类中心的敏感性,将蝗虫算法引入该算法对其聚类中心进行优化,对重构后的高维振动信号采用优化的K-means聚类方法进行分析。研究结果表明:在OLTC的振动信号识别应用中,优化的K-means聚类算法得到的特征量计算结果具备一定的规律性。研究结果为OLTC的机械运行状态监测提供了一种新的途径。 展开更多
关键词 蝗虫算法 有载分接开关 优化K-means 振动信号
下载PDF
基于S型生长曲线的蝗虫优化算法求解机器人路径规划问题
15
作者 冉义 李永胜 蒋烨 《计算机应用》 北大核心 2025年第1期178-185,共8页
针对启发式算法在求解机器人路径规划问题上存在收敛精度低、搜索路径效率低且容易陷入局部最优等问题,提出一种基于S型生长曲线的蝗虫优化算法(SGCIGOA)。首先,引入Logistic混沌序列优化蝗虫初始种群,增强蝗虫种群在迭代初期的多样性;... 针对启发式算法在求解机器人路径规划问题上存在收敛精度低、搜索路径效率低且容易陷入局部最优等问题,提出一种基于S型生长曲线的蝗虫优化算法(SGCIGOA)。首先,引入Logistic混沌序列优化蝗虫初始种群,增强蝗虫种群在迭代初期的多样性;其次,引入S型生长曲线特征的非线性惯性权重,对递减参数递减的方式进行了调整,从而提高算法的收敛速度和寻优精度;最后,在迭代过程中引入基于t分布的位置扰动机制,使算法能充分利用当前种群的有效信息,以更好地平衡全局搜索和局部开发,并降低算法陷入局部最优的概率。实验结果表明,相较于MOGOA (Multi-Objective Grasshopper Optimization Algorithm)、IGOA (Improved Grasshopper Optimization Algorithm)和IAACO (Improvement Adaptive Ant Colony Optimization)等10种对比算法,所提算法在简单环境下的最优路径长度平均缩短0~14.78%,平均迭代次数减少56.60%~90.00%;在复杂环境下的最优路径长度平均缩短0~11.58%,平均迭代次数减少45.00%~92.76%。可见,所提SGCIGOA是用于求解移动机器人路径规划的一种高效算法。 展开更多
关键词 蝗虫优化算法 LOGISTIC混沌映射 S型生长曲线 T分布 机器人路径规划
下载PDF
基于新型元启发式反向传播神经网络的500 kV输电线路覆冰厚度预测
16
作者 苏仁斌 熊卫红 +3 位作者 刘先珊 李智 邹建明 曾垂辉 《兰州大学学报(自然科学版)》 北大核心 2025年第1期17-25,34,共10页
实际输电线路的覆冰监测数据为高维非线性时间序列,以某500 kV典型覆冰线路为研究对象,结合监测序列的统计特征,提出基于新型元启发算法瞪羚优化方法(GOA)的反向传播神经网络(BPNN)模型进行覆冰厚度预测.基于10个标准测试函数的最优解求... 实际输电线路的覆冰监测数据为高维非线性时间序列,以某500 kV典型覆冰线路为研究对象,结合监测序列的统计特征,提出基于新型元启发算法瞪羚优化方法(GOA)的反向传播神经网络(BPNN)模型进行覆冰厚度预测.基于10个标准测试函数的最优解求解,验证优化算法对复杂问题全局最优求解的适用性,引入该算法建立GOA-BPNN模型,仿真不同训练样本数的正弦函数,说明该方法能更快地收敛于最优解.根据线路的5 a覆冰监测数据,基于相关系数矩阵及主成分分析法,将6个主控因子降维为4个,作为GOA-BPNN模型的输入层,构建符合线路特征的覆冰厚度GOABPNN预测模型.该模型针对短时间覆冰序列的预测结果比经典BPNN模型的预测值更准确,验证了其对高阶非线性覆冰时间序列的泛化学习能力.以线路的多年覆冰长时间序列为训练集,预测得到5个时刻的覆冰厚度,GOA-BPNN模型相对其他4个模型的预测值最接近实际监测值,模型对“微地形、微气象”环境中的覆冰厚度预测具有较高的可靠性. 展开更多
关键词 瞪羚优化算法 goa-BPNN模型 主成分分析 覆冰厚度 预测模型
原文传递
基于改进蝗虫算法的电主轴热变形预测研究
17
作者 魏伟 王娇 刘佳 《现代制造技术与装备》 2025年第1期67-69,共3页
电主轴热变形问题严重影响着数控机床的加工精度。热变形的关键参数热膨胀系数存在较强非线性性质。为此,采用改进蝗虫优化算法(Modified Grasshopper Optimization Algorithm,MGOA)优化热膨胀系数,结合有限元仿真模型,计算电主轴的热... 电主轴热变形问题严重影响着数控机床的加工精度。热变形的关键参数热膨胀系数存在较强非线性性质。为此,采用改进蝗虫优化算法(Modified Grasshopper Optimization Algorithm,MGOA)优化热膨胀系数,结合有限元仿真模型,计算电主轴的热变形量。实验结果表明,与热膨胀系数经验值相比,算法优化值得到的热变形量误差更小,更接近实测值。 展开更多
关键词 电主轴 热变形 改进蝗虫优化算法(Mgoa) 热膨胀系数
下载PDF
基于LQR反馈控制的仓储搬运机器人避障控制方法
18
作者 赵冠永 刘大勇 +1 位作者 操蓉蓉 翟志敏 《机械与电子》 2025年第3期46-52,共7页
为提高仓储搬运机器人避障控制效果,提出一种基于LQR反馈控制的避障控制方法。将安装在机器人身上的激光雷达、超声波传感器和红外线传感器采集的视觉感知信息进行融合,并引用避障评估系数构建目标函数,以约束仓储搬运机器人在避障过程... 为提高仓储搬运机器人避障控制效果,提出一种基于LQR反馈控制的避障控制方法。将安装在机器人身上的激光雷达、超声波传感器和红外线传感器采集的视觉感知信息进行融合,并引用避障评估系数构建目标函数,以约束仓储搬运机器人在避障过程中的主动规避能力,适应复杂无序的工作环境。接着依据融合后的信息获取障碍物位置,并利用蝗虫优化算法求解目标函数,确定仓储搬运机器人最佳行驶路线。最后,依据LQR反馈控制理论,将当前仓储搬运机器人行驶与目标路径位置和方向的误差作为运行状态变量,并引入拉格朗日乘子,求得目标路径跟踪避障控制的反馈增益矩阵,获得最终的LQR反馈控制量,实现仓储搬运机器人避障控制。在模拟的实验环境中展开测试,结果表明,所提方法可以指导仓储搬运机器人实现精准避障,其控制误差熵较低,具有较好的避障控制性能。 展开更多
关键词 仓储搬运机器人 视觉感知信息融合 蝗虫优化算法 LQR反馈控制
下载PDF
基于GOA-SVM的短期负荷预测 被引量:23
19
作者 宫毓斌 滕欢 《电测与仪表》 北大核心 2019年第14期12-16,共5页
支持向量机是借助于凸优化技术的统计学习方法,与传统神经网络相比,泛化错误率低并且结果易于解释。将支持向量机用于负荷预测时,参数选择不准确会导致预测性能较差。提出一种基于蚱蜢优化算法的支持向量机短期负荷预测方法,以某地区负... 支持向量机是借助于凸优化技术的统计学习方法,与传统神经网络相比,泛化错误率低并且结果易于解释。将支持向量机用于负荷预测时,参数选择不准确会导致预测性能较差。提出一种基于蚱蜢优化算法的支持向量机短期负荷预测方法,以某地区负荷、天气等历史数据对SVM进行训练,并通过GOA优化选取支持向量机参数,然后以得到的最优参数建立GOA-SVM负荷预测模型。算例分析表明,GOA-SVM预测模型比GA-SVM和PSO-SVM模型有更好的收敛性能,且预测精度更高。 展开更多
关键词 短期负荷预测 支持向量机 蚱蜢优化算法
下载PDF
迁移学习框架下高心墙堆石坝施工仿真参数IGOA-MLP动态预测模型 被引量:2
20
作者 吕菲 钟登华 +2 位作者 余佳 张君 张雨诺 《水利学报》 EI CSCD 北大核心 2023年第10期1151-1162,共12页
施工仿真参数是影响高心墙堆石坝仿真结果准确性的关键。现有方法基于历史数据来预测未来填筑层的仿真参数,忽略了不同层之间的施工差异;同时,在新一层开始时往往存在数据不足或缺失的问题;此外,施工参数受到气象条件、机械运行状态等... 施工仿真参数是影响高心墙堆石坝仿真结果准确性的关键。现有方法基于历史数据来预测未来填筑层的仿真参数,忽略了不同层之间的施工差异;同时,在新一层开始时往往存在数据不足或缺失的问题;此外,施工参数受到气象条件、机械运行状态等多因素影响而动态变化。本文利用迁移学习解决了上述问题,该方法具有通过知识迁移解决少样本建模问题的优势,同时考虑气象条件、机械运行状态等多种因素的定量影响,提出迁移学习框架下的高心墙堆石坝施工仿真参数改进蝗虫算法优化的多层感知机动态预测模型。首先,建立综合考虑多因素影响的施工仿真参数IGOA-MLP预测模型;其中,采用非线性缩减因子和柯西-高斯混合变异模式改进蝗虫优化算法(IGOA),并利用IGOA高效全局最优搜索能力来优化多层感知机(MLP)的超参数。其次,引入迁移学习策略,将训练集划分为源域和目标域,并在MLP隐藏层中增加自适应层以表征源域数据与目标域数据的差异性,实现历史工况和新工况间的知识迁移,从而解决新工况下缺少数据的问题。工程实例表明,相比于传统MLP模型以及未使用迁移学习的IGOA-MLP模型,本文所提方法的平均绝对百分比误差(MAPE)分别降低了54.68%、40.57%,证明了本文所提模型能够更准确地预测仿真参数,为仿真计算提供可靠的数据基础。 展开更多
关键词 迁移学习 高心墙堆石坝 施工仿真 改进蝗虫算法优化多层感知机 参数预测
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部