Vast grasslands are found in the walnut-fruit forest region of southern Kyrgyzstan,Middle Asia.Located above the worldwide unique walnutfruit forests and used for grazing,they play a pivotal role in the mixed mountain...Vast grasslands are found in the walnut-fruit forest region of southern Kyrgyzstan,Middle Asia.Located above the worldwide unique walnutfruit forests and used for grazing,they play a pivotal role in the mixed mountain agriculture of local farmers.Accordingly,these pastures are subject to an increasing utilization pressure reflecting the changing political and social conditions in the transformation process from a Soviet republic to an independent state.A first detailed analysis of mountain pasture vegetation in the Ferghana Range answers the following questions:What are the main plant community types among Kyrgyzstan's mountain pastures? What are the main environmental gradients that shape their species composition? Which phytogeographical distribution types are predominant? How does grazing affect community composition and species richness in these grasslands? Species composition was classified by cluster analysis;underlying environmental gradients were explored using DCA.A dataset of 395 relevés was used for classification,and a subset of 79 relevés was used in a DCA to analyze the correlation between vegetation,environment,and grazing impact.The investigated pastures were classified into four distinctive plant communities.The site factors altitude,heat load,inclination and grazing impact were found to be the major determinants of the vegetation pattern.A significant overlap between floristic composition and structural and spatial properties was shown.The majority of the species pool consisted of Middle Asian endemics and Eurosiberian species.However,disturbance-tolerant species played a significant role with respect to species composition and coverage of the herbaceous layer in vast areas of southern Kyrgyzstan's mountain pastures.In general,an intense grazing impact is clearly reflected by both species composition and structural variables of plant communities.The highly diverse and unique ecosystem is modified by an increasing utilization pressure.In order to maintain vital processes and functioning of this valuable ecosystem-in both economical and ecological terms-,it is indispensable to adopt appropriate pasture management strategies.展开更多
Ecosystem of eastern Eurasian steppe is facing more and more challenges of global issues such as climate change, food and ecological security and human excessive utilization since the 21st century. Facing on the incre...Ecosystem of eastern Eurasian steppe is facing more and more challenges of global issues such as climate change, food and ecological security and human excessive utilization since the 21st century. Facing on the increasingly prominent international issues, it is very essential for relevant countries, international organizations and domestic counterparts to enhance systematic and mutual cooperation and exchanges to carry out scientific research and develop protection practice on the Eurasian steppe.展开更多
Shrub species are used in restoration projects on dryland for their facilitation effects,which include environmental improvements and protection from herbivore feeding.Facilitation effects on forage grasses are potent...Shrub species are used in restoration projects on dryland for their facilitation effects,which include environmental improvements and protection from herbivore feeding.Facilitation effects on forage grasses are potentially important in improving grazing capacity on rangelands.However,the morphology-dependent performance of benefactor plants in facilitating forage species growth and supplementation under moderate grazing intensity remains unclear.Here,our main purpose was to measure facilitation performance in terms of the survival of a native forage grass,Agropyron cristatum(L.)Gaertn.(Gramineae).,in accordance with the growth conditions of a sand-fixing benefactor shrub,Caragana microphylla Lam.,in the Hulun Buir Grassland,northern China.Six study sites with patches of A.cristatum and C.microphylla were established at the foot of fixed sand dunes.At each site,five quadrats were set in places where C.microphylla coverage was 100%and A.cristatum grew among the shrubs(shrub quadrats),and another five were set where A.cristatum grew alone without C.microphylla(grass quadrats).We measured the morphological traits of C.microphylla and A.cristatum in all 60 quadrats,along with the soil water content and soil temperature.The data were compared between the shrub and grass quadrats by generalized linear mixed-effect models to assess the shrub's facilitation effects.We also used such models to elucidate the relationship between the average height of C.microphylla and the morphological traits of A.cristatum in the shrub quadrats.The maximum height,average grazed height,and the number of seed heads of A.cristatum were greater in the shrub quadrats than in the grass quadrats.The soil surface temperature was lower in the shrub quadrats.The maximum height and seed head number of A.cristatum were positively associated with the average height of C.microphylla.These results suggest that the grazing impact and heat stress were smaller in shrub quadrats than in grass quadrats,and that the degree of this protective effect depended on the shrub height.The shrub canopy seemed to reduce the increase in soil temperature and keep the grass vigorous.Livestock likely avoided grazing grasses in the C.microphylla patches because of the shrub's spiny leaves;only the upper parts of the grass stems(including the seed heads)protruding from the shrub canopy were grazed.The sand-fixing shrub thus moderates the grazing impact and soil temperature,and contributes to vegetation restoration and grazing system sustainability.展开更多
Data material of a long-term high mountain ecosystem research project was used to interpret thegrazing impact of reindeers. In central Norwayinvestigations were conducted to both, areas wherereindeer grazing is exclud...Data material of a long-term high mountain ecosystem research project was used to interpret thegrazing impact of reindeers. In central Norwayinvestigations were conducted to both, areas wherereindeer grazing is excluded, and areas whereintensive pasturing is present for a long period oftime. The comparative analysis of grazing impact was based on similar environmental conditions. Theresults were transposed to northern Norway wheredramatic overgrazing had been exceeding thecarrying capacity. Using landscape ecologicalmappings, especially of vegetation and soils, theimpact of reindeer grazing in different areas becameobvious. Non-grazed lichen-dominated ecosystems of the snow-free locations functioned sensitively nearthe limit of organism survival. These localities weremost influenced by grazing as they offer the winterforage to the reindeers. So, intensive grazing incentral Norway led to landscape degradation bydestruction of the vegetation and superinduced bysoil erosion. Those features were comparable to thesituation in northern Norway, where a broad-scale destruction of the environment combined with adepression of the altitudinal belts had occurred dueto overgrazing. Functioning principles of intact high mountain systems were explained and used to interpret theenvironmental background for the understanding ofdegradation phenomena. Finally, the use of a newmodel calculating the carrying capacity of high mountain landscape was discussed.展开更多
Rodents play an important role in rangelands through the engineering of extensive burrow systems,which provides key habitats for many animal and plant species.We have analyzed the long-term variation in the abun...Rodents play an important role in rangelands through the engineering of extensive burrow systems,which provides key habitats for many animal and plant species.We have analyzed the long-term variation in the abundance and distribution of rodent burrows in grazing ecosystems of southern Russia(Kalmykia)under the landscape change from desert to steppe caused by the drastic reduction of livestock after the collapse of the USSR in the early 1990s.We conducted burrow surveys in the“desert”(1980)and“steppe”(2017)periods on 193-km transects.We found considerable changes in burrow abundance and distribution,as well as evidence of desert habitat fragmentation and isolation caused by the expansion of tall-grass communities.Burrows of the open-dwelling diurnal ground squirrel(Spermophilus pygmaeus),the dominant and the keystone species during the“desert”period,almost completely disappeared from the rodent burrow network by 2017,indicating significant habitat loss.In contrast,the burrows of the folivorous social vole(Microtus socialis)which was rare in the 1980s,became abundant and ubiquitously distributed.The burrow density of the desert-dwelling psammophilous midday gerbil(Meriones meridianus)decreased,while the distances between occupied patches increased,indicating desert habitat fragmentation and loss of population connectivity.Burrows of the folivorous tamarisk gerbils(M.tamariscinus)were recorded only sporadically in both 1980 and 2017.The observed changes in the rodent burrow network,the key component of grazing ecosystems,correlate with rodent species ecology and can have long-term and important consequences for ecosystem functioning.展开更多
基金the joint project "The Impact of the Transformation Process on Human-Environmental Interactions in Southern Kyrgyzstan" supported by the Volkswagen Foundation
文摘Vast grasslands are found in the walnut-fruit forest region of southern Kyrgyzstan,Middle Asia.Located above the worldwide unique walnutfruit forests and used for grazing,they play a pivotal role in the mixed mountain agriculture of local farmers.Accordingly,these pastures are subject to an increasing utilization pressure reflecting the changing political and social conditions in the transformation process from a Soviet republic to an independent state.A first detailed analysis of mountain pasture vegetation in the Ferghana Range answers the following questions:What are the main plant community types among Kyrgyzstan's mountain pastures? What are the main environmental gradients that shape their species composition? Which phytogeographical distribution types are predominant? How does grazing affect community composition and species richness in these grasslands? Species composition was classified by cluster analysis;underlying environmental gradients were explored using DCA.A dataset of 395 relevés was used for classification,and a subset of 79 relevés was used in a DCA to analyze the correlation between vegetation,environment,and grazing impact.The investigated pastures were classified into four distinctive plant communities.The site factors altitude,heat load,inclination and grazing impact were found to be the major determinants of the vegetation pattern.A significant overlap between floristic composition and structural and spatial properties was shown.The majority of the species pool consisted of Middle Asian endemics and Eurosiberian species.However,disturbance-tolerant species played a significant role with respect to species composition and coverage of the herbaceous layer in vast areas of southern Kyrgyzstan's mountain pastures.In general,an intense grazing impact is clearly reflected by both species composition and structural variables of plant communities.The highly diverse and unique ecosystem is modified by an increasing utilization pressure.In order to maintain vital processes and functioning of this valuable ecosystem-in both economical and ecological terms-,it is indispensable to adopt appropriate pasture management strategies.
文摘Ecosystem of eastern Eurasian steppe is facing more and more challenges of global issues such as climate change, food and ecological security and human excessive utilization since the 21st century. Facing on the increasingly prominent international issues, it is very essential for relevant countries, international organizations and domestic counterparts to enhance systematic and mutual cooperation and exchanges to carry out scientific research and develop protection practice on the Eurasian steppe.
基金supported by the Tripartite Environment Ministers Meeting(TEMM)JSPS KAKENHI(JP19H04316).We thank the staff of the Chinese Research Academy of Environmental Sciences(CRAES)the Overseas Environmental Cooperation Center(OECC),Japan for their support during the field survey.
文摘Shrub species are used in restoration projects on dryland for their facilitation effects,which include environmental improvements and protection from herbivore feeding.Facilitation effects on forage grasses are potentially important in improving grazing capacity on rangelands.However,the morphology-dependent performance of benefactor plants in facilitating forage species growth and supplementation under moderate grazing intensity remains unclear.Here,our main purpose was to measure facilitation performance in terms of the survival of a native forage grass,Agropyron cristatum(L.)Gaertn.(Gramineae).,in accordance with the growth conditions of a sand-fixing benefactor shrub,Caragana microphylla Lam.,in the Hulun Buir Grassland,northern China.Six study sites with patches of A.cristatum and C.microphylla were established at the foot of fixed sand dunes.At each site,five quadrats were set in places where C.microphylla coverage was 100%and A.cristatum grew among the shrubs(shrub quadrats),and another five were set where A.cristatum grew alone without C.microphylla(grass quadrats).We measured the morphological traits of C.microphylla and A.cristatum in all 60 quadrats,along with the soil water content and soil temperature.The data were compared between the shrub and grass quadrats by generalized linear mixed-effect models to assess the shrub's facilitation effects.We also used such models to elucidate the relationship between the average height of C.microphylla and the morphological traits of A.cristatum in the shrub quadrats.The maximum height,average grazed height,and the number of seed heads of A.cristatum were greater in the shrub quadrats than in the grass quadrats.The soil surface temperature was lower in the shrub quadrats.The maximum height and seed head number of A.cristatum were positively associated with the average height of C.microphylla.These results suggest that the grazing impact and heat stress were smaller in shrub quadrats than in grass quadrats,and that the degree of this protective effect depended on the shrub height.The shrub canopy seemed to reduce the increase in soil temperature and keep the grass vigorous.Livestock likely avoided grazing grasses in the C.microphylla patches because of the shrub's spiny leaves;only the upper parts of the grass stems(including the seed heads)protruding from the shrub canopy were grazed.The sand-fixing shrub thus moderates the grazing impact and soil temperature,and contributes to vegetation restoration and grazing system sustainability.
文摘Data material of a long-term high mountain ecosystem research project was used to interpret thegrazing impact of reindeers. In central Norwayinvestigations were conducted to both, areas wherereindeer grazing is excluded, and areas whereintensive pasturing is present for a long period oftime. The comparative analysis of grazing impact was based on similar environmental conditions. Theresults were transposed to northern Norway wheredramatic overgrazing had been exceeding thecarrying capacity. Using landscape ecologicalmappings, especially of vegetation and soils, theimpact of reindeer grazing in different areas becameobvious. Non-grazed lichen-dominated ecosystems of the snow-free locations functioned sensitively nearthe limit of organism survival. These localities weremost influenced by grazing as they offer the winterforage to the reindeers. So, intensive grazing incentral Norway led to landscape degradation bydestruction of the vegetation and superinduced bysoil erosion. Those features were comparable to thesituation in northern Norway, where a broad-scale destruction of the environment combined with adepression of the altitudinal belts had occurred dueto overgrazing. Functioning principles of intact high mountain systems were explained and used to interpret theenvironmental background for the understanding ofdegradation phenomena. Finally, the use of a newmodel calculating the carrying capacity of high mountain landscape was discussed.
基金the Russian Foundation for Basic Research(grants 16-04-00739 for AT and 18-34-00155 for ES).
文摘Rodents play an important role in rangelands through the engineering of extensive burrow systems,which provides key habitats for many animal and plant species.We have analyzed the long-term variation in the abundance and distribution of rodent burrows in grazing ecosystems of southern Russia(Kalmykia)under the landscape change from desert to steppe caused by the drastic reduction of livestock after the collapse of the USSR in the early 1990s.We conducted burrow surveys in the“desert”(1980)and“steppe”(2017)periods on 193-km transects.We found considerable changes in burrow abundance and distribution,as well as evidence of desert habitat fragmentation and isolation caused by the expansion of tall-grass communities.Burrows of the open-dwelling diurnal ground squirrel(Spermophilus pygmaeus),the dominant and the keystone species during the“desert”period,almost completely disappeared from the rodent burrow network by 2017,indicating significant habitat loss.In contrast,the burrows of the folivorous social vole(Microtus socialis)which was rare in the 1980s,became abundant and ubiquitously distributed.The burrow density of the desert-dwelling psammophilous midday gerbil(Meriones meridianus)decreased,while the distances between occupied patches increased,indicating desert habitat fragmentation and loss of population connectivity.Burrows of the folivorous tamarisk gerbils(M.tamariscinus)were recorded only sporadically in both 1980 and 2017.The observed changes in the rodent burrow network,the key component of grazing ecosystems,correlate with rodent species ecology and can have long-term and important consequences for ecosystem functioning.