期刊文献+
共找到202篇文章
< 1 2 11 >
每页显示 20 50 100
The Geoscience Frontier of Gulong Shale Oil:Revealing the Role of Continental Shale from Oil Generation to Production
1
作者 Wenyuan He Rukai Zhu +9 位作者 Baowen Cui Shuichang Zhang Qian Meng Bin Bai Zihui Feng Zhengdong Lei Songtao Wu Kun He He Liu Longde Sun 《Engineering》 SCIE EI CAS CSCD 2023年第9期79-92,共14页
The clay mineral content of Daqing Gulong shale is in the range of about 35%–45%,with particle sizes less than 0.0039 mm.The horizontal fluidity of oil in Gulong shale is poor,with near-zero vertical flowability.As a... The clay mineral content of Daqing Gulong shale is in the range of about 35%–45%,with particle sizes less than 0.0039 mm.The horizontal fluidity of oil in Gulong shale is poor,with near-zero vertical flowability.As a result,Gulong shale has been considered to lack commercial value.In recent years,however,interdisciplinary research in geoscience,percolation mechanics,thermodynamics,and surface mechanics has demonstrated that Gulong shale oil has a high degree of maturity and a high residual hydrocarbon content.The expulsion efficiency of Gulong shale in the high mature stage is 32%–48%.Favorable storage spaces in Gulong shale include connecting pores and lamellar fractures developed between and within organic matter and clay mineral complexes.The shale oil mainly occurs in micro-and nano-pores,bedding fractures,and lamellar fractures,with a high gas–oil ratio and medium–high movable oil saturation.Gulong shale has the characteristics of high hardness,a high elastic modulus,and high fracture toughness.This study achieves breakthroughs in the exploration and development of Gulong shale,including the theories of hydrocarbon generation and accumulation,the technologies of mobility and fracturing,and recoverability.It confirms the major transition of Gulong shale from oil generation to oil production,which has extremely significant scientific value and application potential for China’s petroleum industry. 展开更多
关键词 gulong shale gulong shale oil Micro-nano pores Lamellar fracture Continental oil production
下载PDF
Enrichment factors of movable hydrocarbons in lacustrine shale oil and exploration potential of shale oil in Gulong Sag,Songliao Basin,NE China 被引量:2
2
作者 ZHAO Wenzhi BIAN Congsheng +9 位作者 LI Yongxin ZHANG Jinyou HE Kun LIU Wei ZHANG Bin LEI Zhengdong LIU Chang ZHANG Jingya GUAN Ming LIU Shijul 《Petroleum Exploration and Development》 SCIE 2023年第3期520-533,共14页
The geological characteristics and production practices of the major middle-and high-maturity shale oil exploration areas in China are analyzed.Combined with laboratory results,it is clear that three essential conditi... The geological characteristics and production practices of the major middle-and high-maturity shale oil exploration areas in China are analyzed.Combined with laboratory results,it is clear that three essential conditions,i.e.economic initial production,commercial cumulative oil production of single well,and large-scale recoverable reserves confirmed by the testing production,determine whether the continental shale oil can be put into large-scale commercial development.The quantity and quality of movable hydrocarbons are confirmed to be crucial to economic development of shale oil,and focuses in evaluation of shale oil enrichment area/interval.The evaluation indexes of movable hydrocarbon enrichment include:(1)the material basis for forming retained hydrocarbon,including TOC>2%(preferentially 3%-4%),and typeⅠ-Ⅱkerogens;(2)the mobility of retained hydrocarbon,which is closely related to the hydrocarbon composition and flow behaviors of light/heavy components,and can be evaluated from the perspectives of thermal maturity(Ro),gas-oil ratio(GOR),crude oil density,quality of hydrocarbon components,preservation conditions;and(3)the reservoir characteristics associated with the engineering reconstruction,including the main pore throat distribution zone,reservoir physical properties(including fractures),lamellation feature and diagenetic stage,etc.Accordingly,13 evaluation indexes in three categories and their reference values are established.The evaluation indicates that the light shale oil zones in the Gulong Sag of Songliao Basin have the most favorable enrichment conditions of movable hydrocarbons,followed by light oil and black oil zones,containing 20.8×10^(8) t light oil resources in reservoirs with R_(0)>1.2%,pressure coefficient greater than 1.4,effective porosity greater than 6%,crude oil density less than 0.82 g/cm^(3),and GOR>100 m/m^(3).The shale oil in the Gulong Sag can be explored and developed separately by the categories(resource sweet spot,engineering sweet spot,and tight oil sweet spot)depending on shale oil flowability.The Gulong Sag is the most promising area to achieve large-scale breakthrough and production of continental shale oil in China. 展开更多
关键词 gulong Sag continental shale oil movable hydrocarbon enrichment factor enrichment zone/interval evaluation material basis component flow engineering-associated factor
下载PDF
Petroleum Retention,Intraformational Migration and Segmented Accumulation within the Organic-rich Shale in the Cretaceous Qingshankou Formation of the Gulong Sag,Songliao Basin,Northeast China 被引量:1
3
作者 HUANGFU Yuhui ZHANG Jinyou +6 位作者 ZHANG Shuichang WANG Xiaomei HE Kun GUAN Ping ZHANG Huanxu ZHANG Bin WANG Huajian 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第5期1568-1586,共19页
In this study,organic geochemical and petrological analyses were conducted on 111 shale samples from a well to understand the retention,intraformational migration and segmented accumulation(shale oil enrichment in dif... In this study,organic geochemical and petrological analyses were conducted on 111 shale samples from a well to understand the retention,intraformational migration and segmented accumulation(shale oil enrichment in different intervals is unconnected)features of shale oil within the organic-rich shale in the Qingshankou Formation of the Gulong Sag.Our study shows that retained petroleum characteristics in the investigated succession are mainly influenced by three factors:organic richness,intraformational migration and segmented accumulation.Organic matter richness primarily controls the amount of retained petroleum,especially the‘live’component indicated by the S_(2)value rather than the total organic carbon(TOC)figure alone.The negative expulsion efficiencies determined by mass-balance calculations of hydrocarbons reveal that petroleum from adjacent organic-rich intervals migrates into the interval of about 2386-2408 m,which is characterized by high free hydrocarbon(S_(1)),OSI and saturated hydrocarbons content,along with a greater difference inδ^(13)C values between polar compounds(including resins and asphaltenes)and saturated hydrocarbons.The depth-dependent heterogeneity of carbon isotope ratios(δ^(13)C)of mud methane gas,δ^(13)C of extracts gross composition(SARA),δ^(13)C of kerogen and SARA content of extracts suggest that the studied succession can be subdivided into four intervals.The shale oil sealing enrichment character in each interval is further corroborated by the distinctδ^(13)C values of mud methane gas in different intervals.Due to the migration of petroleum into the 2386-2408 m interval,the S_(1),OSI and saturated hydrocarbons content of the interval show higher relative values.The maturity of organic matter in the 2471-2500 m interval is at the highest with the smaller size molecular components of the retained petroleum.Thus,favorable‘sweet spots’may be found in the 2386-2408 m interval and the 2471-2500 m interval,according to the experiment results in this study. 展开更多
关键词 shale oil oil retention intraformational migration segmented accumulation gulong Sag
下载PDF
Key theoretical and technical issues and countermeasures for effective development of Gulong shale oil, Daqing Oilfield, NE China 被引量:1
4
作者 YUAN Shiyi LEI Zhengdong +5 位作者 LI Junshi YAO Zhongwen LI Binhui WANG Rui LIU Yishan WANG Qingzhen 《Petroleum Exploration and Development》 SCIE 2023年第3期638-650,共13页
Aiming at the four issues of underground storage state,exploitation mechanism,crude oil flow and efficient recovery,the key theoretical and technical issues and countermeasures for effective development of Gulong shal... Aiming at the four issues of underground storage state,exploitation mechanism,crude oil flow and efficient recovery,the key theoretical and technical issues and countermeasures for effective development of Gulong shale oil are put forward.Through key exploration and research on fluid occurrence,fluid phase change,exploitation mechanism,oil start-up mechanism,flow regime/pattern,exploitation mode and enhanced oil recovery(EOR)of shale reservoirs with different storage spaces,multi-scale occurrence states of shale oil and phase behavior of fluid in nano confined space were provided,the multi-phase,multi-scale flow mode and production mechanism with hydraulic fracture-shale bedding fracture-matrix infiltration as the core was clarified,and a multi-scale flow mathematical model and recoverable reserves evaluation method were preliminarily established.The feasibility of development mode with early energy replenishment and recovery factor of 3o%was discussed.Based on these,the researches of key theories and technologies for effective development of Gulong shale oil are proposed to focus on:(1)in-situ sampling and non-destructive testing of core and fluid;(2)high-temperature,high-pressure,nano-scale laboratory simulation experiment;(3)fusion of multi-scale multi-flow regime numerical simulation technology and large-scale application software;(4)waterless(CO_(2))fracturing technique and the fracturing technique for increasing the vertical fracture height;(5)early energy replenishment to enhance oil recovery;(6)lifecycle technical and economic evaluation.Moreover,a series of exploitation tests should be performed on site as soon as possible to verify the theoretical understanding,optimize the exploitation mode,form supporting technologies,and provide a generalizable development model,thereby supporting and guiding the effective development and production of Gulong shale oil. 展开更多
关键词 gulong shale oil continental shale oil nano confined space production mechanism flow mode early energy replenishment enhanced oil recovery
下载PDF
Shale oil enrichment evaluation and production law in Gulong Sag,Songliao Basin,NE China 被引量:1
5
作者 SUN Longde CUI Baowen +9 位作者 ZHU Rukai WANG Rui FENG Zihui LI Binhui ZHANG Jingya GAO Bo WANG Qingzhen ZENG Huasen LIAO Yuanhui JIANG Hangl 《Petroleum Exploration and Development》 SCIE 2023年第3期505-519,共15页
Based on the results of drilling,tests and simulation experiments,the shales of the Cretaceous Qingshankou Formation in the Gulong Sag of the Songliao Basin are discussed with respect to hydrocarbon generation evoluti... Based on the results of drilling,tests and simulation experiments,the shales of the Cretaceous Qingshankou Formation in the Gulong Sag of the Songliao Basin are discussed with respect to hydrocarbon generation evolution,shale oil occurrence,and pore/fracture evolution mechanism.In conjunction with a substantial amount of oil testing and production data,the Gulong shale oil enrichment layers are evaluated and the production behaviors and decline law are analyzed.The results are drawn in four aspects.First,the Gulong shales are in the stage of extensive hydrocarbon expulsion when R_(0) is 1.0%-1.2%,with the peak hydrocarbon expulsion efficiency of 49.5%approximately.In the low-medium maturity stage,shale oil migrates from kerogen to rocks and organic pores/fractures.In the medium-high maturity stage,shale oil transforms from adsorbed state to free state.Second,the clay mineral intergranular pores/fractures,dissolution pores,and organic pores make up the majority of the pore structure.During the transformation,clay minerals undergo significant intergranular pore/fracture development between the minerals such as illite and illite/smectite mixed layer.A network of pores/fractures is formed by organic matter cracking.Third,free hydrocarbon content,effective porosity,total porosity,and brittle mineral content are the core indicators for the evaluation of shale oil enrichment layers.Class-I layers are defined as free hydrocarbon content equal or greater than 6.0 mg/g,effective porosity equal or greater than 3.5%,total porosity equal or greater than 8.0%,and brittle mineral content equal or greater than 50%.It is believed that the favourable oil layers are Q2-Q3 and Q8-Q9.Fourth,the horizontal wells in the core area of the light oil zone exhibit a high cumulative production in the first year,and present a hyperbolic production decline pattern,with the decline index of 0.85-0.95,the first-year decline rate of 14.5%-26.5%,and the single-well estimated ultimate recovery(EUR)greater than 2.0×10^(4)t.In practical exploration and production,more efforts will be devoted to the clarification of hydrocarbon generation and expulsion mechanisms,accurate testing of porosity and hydrocarbon content/phase of shale under formation conditions,precise delineation of the boundary of enrichment area,relationship between mechanical properties and stimulated reservoir volume,and enhanced oil recovery,in order to improve the EUR and achieve a large-scale,efficient development of shale oil. 展开更多
关键词 Songliao Basin gulong shale oil Cretaceous Qingshankou Formation hydrocarbon generation and expulsion reservoir pore type pore/fracture formation mechanism enrichment layer evaluation production decline law
下载PDF
Preliminary study on nanopores,nanofissures,and in situ accumulation of Gulong shale oil
6
作者 HE Wenyuan 《地学前缘》 EI CAS CSCD 北大核心 2023年第1期260-280,共21页
The Qingshankou Formation shale oil in the Gulong Sag is an important oil and gas reservoir in the Daqing oilfield,with geological resources of 15.1 billion tons.The fabric of shale can reflect not only its genesis bu... The Qingshankou Formation shale oil in the Gulong Sag is an important oil and gas reservoir in the Daqing oilfield,with geological resources of 15.1 billion tons.The fabric of shale can reflect not only its genesis but also the nature of the reservoir space,its physical properties,oil content,and development value.Here,the characteristics of clay minerals in the Gulong shale oil reservoir were studied via electron microscopy,with the primary focus on the microfabrics and reservoir space;thereafter,the in situ accumulation was studied and discussed.Electron backscattering patterns revealed that nanometer pores and fissures were well developed in the Gulong shale oil reservoir.The nano pores were mostly 20-50 nm in diameter(median 20-30 nm),irregularly shaped,mostly,polygonal,and connected with nanofissures.The widths of nanofissures ranged mostly between 10-50 nm(median 20-30 nm);moreover,these fissures were mainly formed by F-F condensation of clay sheets(clay domains).The coagulation of clays was closely related to organic matter,especially algae.The clay colloids were negatively charged due to isocrystalline replacement;hence,metal cations were absorbed around the clay,forming a positive clay group.The positively charged clays subsequently adsorbed negatively charged humic acid(organic matter)and initially degraded algae to form an organic clay flocculant.When the organic clay flocculates reached the threshold for hydrocarbon generation and expulsion,the volume of organic matter decreased by 87%;thereafter,the generated and expelled hydrocarbon filled the nearby pores formed by this contraction.Moreover,the discharged hydrocarbon could not migrate due to capillary resistance(~12 MPa)of the nanopores;hence,the nanopores formed a unique continuous in situ reservoir within the Gulong shale oil.This study demonstrated that the Gulong shale oil reservoir is an actual clay-type shale reservoir with numerous nanopore and fissures.During coagulation,a large amount of organic matter(including layered algae)was absorbed by the clay,forming an organic clay condensate that could have provided the material foundation for hydrocarbon generation at a later stage.Thermal simulation experiments revealed that the volume of organic matter decreased sharply after hydrocarbon generation and expulsion. 展开更多
关键词 SHALE clay organic matter NANOPORES nanofissures in situ accumulation gulong Sag
下载PDF
Microscopic oil occurrence in high-maturity lacustrine shales:Qingshankou Formation,Gulong Sag,Songliao Basin
7
作者 Jing-Ya Zhang Ru-Kai Zhu +5 位作者 Song-Tao Wu Xiao-Hua Jiang Chang Liu Yi Cai Su-Rong Zhang Tian-Shu Zhang 《Petroleum Science》 SCIE EI CSCD 2023年第5期2726-2746,共21页
Occurrence and mobility of shale oil are prerequisites for evaluating shale oil reserves and prioritizing exploration targets,particularly for heterogeneous lacustrine shales.The Qingshankou Formation in the Gulong Sa... Occurrence and mobility of shale oil are prerequisites for evaluating shale oil reserves and prioritizing exploration targets,particularly for heterogeneous lacustrine shales.The Qingshankou Formation in the Gulong Sag,Songliao Basin is a classic lacustrine pure shale reservoir that contains abundant shale oil resources.The predicted geological reserves of the shale are 1.268×10^(9) t.In this study,field emission scanning electron microscope(FE-SEM),the modular automated processing system(MAPS),pyrolysisgas chromatography(Py-GC),low-pressure nitrogen gas adsorption(LPNA),Soxhlet extraction,pyrolysis,and 2-D nuclear magnetic resonance(NMR)were integrated to describe the shale oil components,microscopic occurrence,mobility,and the effective pore size distribution.Meanwhile,the related controlling factors are discussed.The shale oil in the Qingshankou Fm exists dominantly in the matrix pores of the clay minerals,with small amounts distributed in the intergranular pores of terrigenous clastic grains,intercrystalline pores of pyrite,intragranular pores of ostracod shells,and micro-fractures.Shale oil is distributed in the pore spaces of variable sizes in different lithofacies.The clay mineral-laminated shales are characterized by the broadest range of pore size and largest volume of pore spaces with shale oil distribution,while the ostracod-laminated shales have limited pore spaces retaining oil.Furthermore,the proposed integrated analysis evaluates the shale oil molecules existing in two states:movable,and adsorbed oil,respectively.The result illustrates that movable oil takes up 30.6%e79.4%of the total residual oil.TOC,mineral composition,and pore structures of the shale joint together to control the states and mobility of the shale oil.TOC values are positively correlated with the quantities of shale oil regardless of the state of oil.The mineral components significantly impact the state of shale oil.Noticeable differences in the states of oil were observed following the changing types of minerals,possibly due to their difference in adsorption capacity and wettability.Clay minerals attract more adsorbed oil than movable oil.Felsic minerals generally decrease the occurrence of total and adsorbed oil.Carbonate plays a positive role in hydrocarbon retention of all the shale oil states.As for the pore structure,the average pore size exerts a critical impact on the total,movable,and adsorbed oil content.The total pore volume and specific surface area of shales play a principal role in controlling the total yields and amounts of adsorbed oil.This research improves the understanding of the occurrence characteristics and enrichment mechanisms of shale oil in terrestrial pure shales and provides a reference for locating favorable shale oil exploration areas. 展开更多
关键词 Shale oil content Occurrence states Micro-oil distribution Effective pore spaces Controlling factors gulong sag
下载PDF
Practice and development suggestions of hydraulic fracturing technology in the Gulong shale oil reservoirs of Songliao Basin, NE China
8
作者 LIU He HUANG Youquan +2 位作者 CAI Meng MENG Siwei TAO Jiaping 《Petroleum Exploration and Development》 SCIE 2023年第3期688-698,共11页
This paper reviews the multiple rounds of upgrades of the hydraulic fracturing technology used in the Gulong shale oil reservoirs and gives suggestions about stimulation technology development in relation to the produ... This paper reviews the multiple rounds of upgrades of the hydraulic fracturing technology used in the Gulong shale oil reservoirs and gives suggestions about stimulation technology development in relation to the production performance of Gulong shale oil wells.Under the control of high-density bedding fractures,fracturing in the Gulong shale results in a complex fracture morphology,yet with highly suppressed fracture height and length.Hydraulic fracturing fails to generate artificial fractures with sufficient lengths and heights,which is a main restraint on the effective stimulation in the Gulong shale oil reservoirs.In this regard,the fracturing design shall follow the strategy of"controlling near-wellbore complex fractures and maximizing the extension of main fractures"Increasing the proportions of guar gum fracturing fluids,reducing perforation clusters within one fracturing stage,raising pump rates and appropriately exploiting stress interference are conducive to fracture propagation and lead to a considerably expanded stimulated reservoir volume(SRV).The upgraded main hydraulic fracturing technology is much more applicable to the Gulong shale oil reservoirs.It accelerates the oil production with a low flowback rate and lifts oil cut during the initial production of well groups,which both help to improve well production.It is suggested to optimize the hydraulic fracturing technology in six aspects,namely,suppressing propagation of near-wellbore microfractures,improving the pumping scheme of CO_(2),managing the perforating density,enhancing multi-proppant combination,reviewing well pattern/spacing,and discreetly applying fiber-assisted injection,so as to improve the SRv,the distal fracture complexity and the long-term fracture conductivity. 展开更多
关键词 continental shale oil Songliao Basin gulong shale oil horizontal well hydraulic fracturing reservoir stimulation stimulated reservoir volume
下载PDF
In-situ hydrocarbon formation and accumulation mechanisms of micro- and nano-scale pore-fracture in Gulong shale, Songliao Basin, NE China
9
作者 WANG Xiaojun CUI Baowen +5 位作者 FENG Zihui SHAO Hongmei HUO Qiuli ZHANG Bin GAO Bo ZENG Huasen 《Petroleum Exploration and Development》 SCIE 2023年第6期1269-1281,共13页
By conducting experimental analyses, including thermal pyrolysis, micro-/nano-CT, argon-ion polishing field emission scanning electron microscopy (FE-SEM), confocal laser scanning microscopy (CLSM), and two-dimensiona... By conducting experimental analyses, including thermal pyrolysis, micro-/nano-CT, argon-ion polishing field emission scanning electron microscopy (FE-SEM), confocal laser scanning microscopy (CLSM), and two-dimensional nuclear magnetic resonance (2D NMR), the Gulong shale oil in the Songliao Basin was investigated with respect to formation model, pore structure and accumulation mechanism. First, in the Gulong shale, there are a large number of pico-algae, nano-algae and dinoflagellates, which were formed in brackish water environment and constituted the hydrogen-rich oil source materials of shale. Second, most of the oil-generating materials of the Qingshankou Formation shale exist in the form of organo-clay complex. During organic matter thermal evolution, clay minerals had double effects of suppression and catalytic hydrogenation, which expanded shale oil window and increased light hydrocarbon yield. Third, the formation of storage space in the Gulong Shale was related to dissolution and hydrocarbon generation. With the diagenesis, micro-/nano-pores increased, pore diameter decreased and more bedding fractures appeared, which jointly gave rise to the unique reservoir with dual media (i.e. nano-scale pores and micro-scale bedding fractures) in the Gulong shale. Fourth, the micro-/nano-scale oil storage unit in the Gulong shale exhibits independent oil/gas occurrence phase, and shows that all-size pores contain oils, which occur in condensate state in micropores or in oil-gas two phase (or liquid) state in macropores/mesopores. The understanding about Gulong shale oil formation and accumulation mechanism has theoretical and practical significance for advancing continental shale oil exploration in China. 展开更多
关键词 micro- nano-scale oil storage unit hydrocarbon occurrence phase organo-clay complex in-situ hydrocarbon accumulation gulong shale oil Cretaceous Qingshankou Formation Songliao Basin
下载PDF
Gulong shale oil enrichment mechanism and orderly distribution of conventional–unconventional oils in the Cretaceous Qingshankou Formation,Songliao Basin,NE China
10
作者 ZHANG Shuichang ZHANG Bin +6 位作者 WANG Xiaomei FENG Zihui HE Kun WANG Huajian FU Xiuli LIU Yuke YANG Chunlong 《Petroleum Exploration and Development》 SCIE 2023年第5期1045-1059,共15页
Through the study of organic matter enrichment,hydrocarbon generation and accumulation process of black shale of the Cretaceous Qingshankou Formation in the Songliao Basin,the enrichment mechanism of Gulong shale oil ... Through the study of organic matter enrichment,hydrocarbon generation and accumulation process of black shale of the Cretaceous Qingshankou Formation in the Songliao Basin,the enrichment mechanism of Gulong shale oil and the distribution of conventional–unconventional oil are revealed.The Songliao Basin is a huge interior lake basin formed in the Early Cretaceous under the control of the subduction and retreat of the western Pacific plate and the massive horizontal displacement of the Tanlu Fault Zone in Northeast China.During the deposition of the Qingshankou Formation,strong terrestrial hydrological cycle led to the lake level rise of the ancient Songliao Basin and the input of a large amount of nutrients,resulting in planktonic bacteria and algae flourish.Intermittent seawater intrusion events promoted the formation of salinization stratification and anoxic environment in the lake,which were beneficial to the enrichment of organic matters.Biomarkers analysis confirms that the biogenic organic matter of planktonic bacteria and algae modified by microorganisms plays an important role in the formation of high-quality source rocks with high oil generation capability.There are four favorable conditions for the enrichment of light shale oil in the Qingshankou Formation of the Gulong Sag,Songliao Basin:the moderate organic matter abundance and high oil potential provide sufficient material basis for oil enrichment;high degree of thermal evolution makes shale oil have high GOR and good mobility;low hydrocarbon expulsion efficiency leads to a high content of retained hydrocarbons in the source rock;and the confinement effect of intra-layer cement in the high maturity stage induces the efficient accumulation of light shale oil.The restoration of hydrocarbon accumulation process suggests that liquid hydrocarbons generated in the early(low–medium maturity)stage of the Qingshankou Formation source rocks accumulated in placanticline and slope after long-distance secondary migration,forming high-quality conventional and tight oil reservoirs.Light oil generated in the late(medium–high maturity)stage accumulated in situ,forming about 15 billion tons of Gulong shale oil resources,which finally enabled the orderly distribution of conventional–unconventional oils that are contiguous horizontally and superposed vertically within the basin,showing a complete pattern of“whole petroleum system”with conventional oil,tight oil and shale oil in sequence. 展开更多
关键词 Songliao Basin Cretaceous Qingshankou Formation gulong shale oil organic carbon storage orderly distribution of conventional-unconventional oil fault sealing whole petroleum system shale oil enrichment
下载PDF
An analysis of major scientific problems and research paths of Gulong shale oil in Daqing Oilfield, NE China 被引量:3
11
作者 SUN Longde LIU He +6 位作者 HE Wenyuan LI Guoxin ZHANG Shuichang ZHU Rukai JIN Xu MENG Siwei JIANG Hang 《Petroleum Exploration and Development》 CSCD 2021年第3期527-540,共14页
After the preliminary basic research on the problems encountered during the production period of Gulong shale oil in the Songliao Basin, NE China, and the scientific exploration, the special characteristics of Gulong ... After the preliminary basic research on the problems encountered during the production period of Gulong shale oil in the Songliao Basin, NE China, and the scientific exploration, the special characteristics of Gulong shale oil in terms of reservoir space, phase distribution, flow pattern, and mineral evolution are proposed. The main results are as follows :(1) The source of organic matter, mechanism of hydrocarbon generation and expulsion, and key factors affecting shale oil abundance;(2) The types and structural characteristics of the reservoir and their contribution to porosity and permeability;(3) The mineral origin and evolution of minerals and their influence on reservoir availability, sensitivity, and compressibility;(4) The rock mechanical characteristics and fracture propagation law of Gulong shale;(5) The shale oil products, phase change law and main control factors of adsorption and desorption conversion of Gulong shale oil;(6) The mechanism of shale oil-liquid, solid-liquid gas interaction and enhanced oil recovery. Three key research suggestions are proposed to realize the large-scale economic utilization of the Gulong shale oil as follows:(1) Deepen research on the mechanism of oil and gas generation and discharge, storage and transportation, to guide the selection of geological sweet spots of shale oil;(2) Deepen research on the compressibility and fracture initiation mechanism to support the selection of engineering sweet spots and optimization of engineering design;(3) Deepen research on the fluid interaction mechanism under reservoir conditions, os us to guide the optimization of development schemes and the selection of EOR technologies. A successful development of Gulong shale oil requires global experts and scholars to contribute multidisciplinary innovative ideas and technical ideas to solve production problems. 展开更多
关键词 Songliao Basin gulong Sag continental shale oil resource endowment reservoir characteristics scientific problem research direction
下载PDF
Exploration breakthrough and its significance of Gulong lacustrine shale oil in the Songliao Basin,Northeastern China 被引量:4
12
作者 Zhijun Jin Xinping Liang Zhenrui Bai 《Energy Geoscience》 2022年第2期120-125,共6页
Lacustrine shale oil resources are abundant in many petroliferous basins in China.The shale oil formations are characterized by low API gravity,high viscosity,poor mobility,high clay content,low brittleness and etc.Ex... Lacustrine shale oil resources are abundant in many petroliferous basins in China.The shale oil formations are characterized by low API gravity,high viscosity,poor mobility,high clay content,low brittleness and etc.Exploration of lacustrine shale oil started relatively late in China,but its progress is very rapid and breakthroughs have been made successively.In this short communication,we introduced the most significant shale oil discovery which is made recently in the Qingshankou Formation of the Gulong sag in the Songliao Basin.Key exploratory wells including Guye 1H(GY1H),Yingye 1H(YY1H)and Guye 2HC(GY2HC)tested stable and high oil flow in shale reservoirs,revealing the relatively stable and high oil production capacity of shale in the Gulong sag of Daqing Oilfield.It marks a leap of petroleum theoretical recognition from lacustrine shale generating oil to producing oil and from the theory of traditional oil migration and accumulation to the theory of indigenous oil accumulation in organic-rich shale.Although lacustrine shale oil exploration and development still faces many challenges in China,its prospect is quite promising. 展开更多
关键词 Lacustrine shale oil Exploration breakthrough Qingshankou Formation gulong sag Songliao Basin
下载PDF
Calculation of oil saturation in clay-rich shale reservoirs:A case study of Qing 1 Member of Cretaceous Qingshankou Formation in Gulong Sag,Songliao Basin,NE China
13
作者 LI Chaoliu YAN Weilin +5 位作者 WU Hongliang TIAN Han ZHENG Jiandong YU Jun FENG Zhou XU Hongjun 《Petroleum Exploration and Development》 CSCD 2022年第6期1351-1363,共13页
The targeted reservoir,which is referred as the first member of Cretaceous Qingshankou Formation in Gulong Sag,Songliao Basin,NE China,is characterized by the enrichment of clay and lamellation fractures.Aiming at the... The targeted reservoir,which is referred as the first member of Cretaceous Qingshankou Formation in Gulong Sag,Songliao Basin,NE China,is characterized by the enrichment of clay and lamellation fractures.Aiming at the technical challenge of determining oil saturation of such reservoir,nano-pores were accurately described and located through focused ion beam scanning electron microscopy and quantitative evaluation of minerals by scanning electron microscopy based on Simandoux model,to construct a 4D digital core frame.Electrical parameters of the shale reservoir were determined by finite element simulation,and the oil saturation calculation method suitable for shale was proposed.Comparison between the results from this method with that from real core test and 2D nuclear magnetic log shows that the absolute errors meet the requirements of the current reserve specification in China for clay-rich shale reservoir.Comparison analysis of multiple wells shows that the oil saturation values calculated by this method of several points vertically in single wells and multiple wells on the plane are in agreement with the test results of core samples and the regional deposition pattern,proving the accuracy and applicability of the method model. 展开更多
关键词 shale oil digital core well log interpretation oil saturation Qingshankou Formation gulong Sag Songliao Basin
下载PDF
松辽盆地古龙凹陷青山口组页岩油储层中的重力坠落砂脉的发现及其意义
14
作者 董万百 张祥国 +1 位作者 钟建华 孙宁亮 《地质科学》 CAS CSCD 北大核心 2024年第1期180-198,共19页
古龙页岩油是松辽盆地重要的接替资源,资源量可达151亿吨之多。从沉积和岩石学特点上看,古龙青山口组页岩最大的特点之一是广泛发育了一种很特殊的砂脉,所以这也是探讨古龙青山口组页岩形成环境的一个重要信息。古龙青山口组页岩油储层... 古龙页岩油是松辽盆地重要的接替资源,资源量可达151亿吨之多。从沉积和岩石学特点上看,古龙青山口组页岩最大的特点之一是广泛发育了一种很特殊的砂脉,所以这也是探讨古龙青山口组页岩形成环境的一个重要信息。古龙青山口组页岩油储层中的砂脉总体规模较小,宽度多在1~2 mm,可见长度(或高度)多在1~2 cm,大部分弯曲如肠,少数微曲;多倾斜产出,倾斜方向有一定规律,隔180°对称;一般发育在灰黑色的泥页岩中,少量发育在粉砂岩和白云岩(结核)中。砂脉的上部或顶部一般都有一层粉砂,与砂脉紧密相连,是砂脉的“根”;而砂脉的底部一般都是灰黑色的泥页岩,见不到粉砂层,所以揭示形成砂脉的源物质是来自于顶部的粉砂层,而不是底部。初步研究认为,古龙青山口组页岩油储层中的岩脉有两种成因:第一种是高压液化充注,形成了规模较大的砂脉;第二种由密度倒置引起的重力沉降形成风暴把(粉)砂级颗粒快速搬运到刚沉积的黏土之上,由于风暴浪的振荡,使粉砂液化流动,再加上黏土的密度较小和粉砂层的密度较大,使得粉砂在重力的驱动下沉降到黏土中形成砂脉。研究古龙页岩油储层中的砂脉具有4个意义:1)可以研究砂脉形成时的沉积环境、沉积过程和沉积物状态;2)可以研究泥页岩的成岩压实率;3)辅助确定白云岩(结核)的形成时间;4)可以辅助储层评价。 展开更多
关键词 砂脉 液化 重力坠落 页岩油 青山口组 古龙凹陷
下载PDF
核磁共振测井在古龙页岩油评价中的应用
15
作者 陈龙川 张兆谦 +4 位作者 郑建东 王春燕 朱建华 王文娟 高吉峰 《测井技术》 CAS 2024年第1期110-116,共7页
古龙页岩油储层黏土含量高,孔隙结构较为复杂,微米-纳米孔喉及微裂缝发育,利用常规方法评价储层孔隙结构及物性、含油性具有较大难度。针对以上难题,在岩石物理实验基础上,提出了核磁共振变T_(2)谱截止值有效孔隙度计算方法和考虑小孔... 古龙页岩油储层黏土含量高,孔隙结构较为复杂,微米-纳米孔喉及微裂缝发育,利用常规方法评价储层孔隙结构及物性、含油性具有较大难度。针对以上难题,在岩石物理实验基础上,提出了核磁共振变T_(2)谱截止值有效孔隙度计算方法和考虑小孔隙含油的二维核磁共振含油饱和度计算模型,并通过核磁共振区间孔隙度分析,厘清了古龙页岩储层孔隙结构。利用该方法计算的有效孔隙度平均相对误差为7.3%,含油饱和度平均绝对误差为4.0%,这不仅提高了计算储量关键参数的解释精度,还为后续开发提供了技术保障。该技术流程和方法对于类似页岩油的有效孔隙度和含油饱和度的评价同样具有指导意义,有助于推动页岩油等非常规油气资源的开发利用。 展开更多
关键词 古龙页岩油 核磁共振测井 孔隙度 含油饱和度 二维核磁共振
下载PDF
古龙页岩油高温高压注CO_(2)驱动用效果
16
作者 李斌会 邓森 +4 位作者 张江 曹胜 郭天娇 徐全 霍迎冬 《大庆石油地质与开发》 CAS 北大核心 2024年第1期42-51,共10页
为了明确古龙页岩油高温高压注CO_(2)驱动用效果,首先根据页岩压汞和氮气吸附实验结果,给出页岩T2值与孔喉半径转换系数,根据饱和页岩的T2谱特征,将页岩孔隙分为小孔、中大孔和页理缝;然后通过计算页岩油采出程度,考察吞吐周期、闷井时... 为了明确古龙页岩油高温高压注CO_(2)驱动用效果,首先根据页岩压汞和氮气吸附实验结果,给出页岩T2值与孔喉半径转换系数,根据饱和页岩的T2谱特征,将页岩孔隙分为小孔、中大孔和页理缝;然后通过计算页岩油采出程度,考察吞吐周期、闷井时间、裂缝对吞吐驱油效果的影响,并且分析吞吐后岩心孔隙结构的改变程度;最后对比页岩油CO_(2)吞吐和CO_(2)驱替的驱油效果,并给出最优的驱油方式。结果表明:吞吐动用幅度最大的是中大孔和页理缝中的页岩油,小孔中的页岩油采出程度最低,增加闷井时间,页岩油采出程度仅提高0.81百分点,压裂可以使小孔中的页岩油采出程度提高11.33百分点,使小孔中的页岩油得到有效动用;吞吐比驱替可以使页岩油采出程度提高30.98百分点,并且可以动用干岩样中的页岩油,效果优于驱替;驱吞结合驱油方式比只进行吞吐可以使页岩油采出程度提高12.88百分点以上,并且可以大幅度提高小孔中页岩油的采出程度;吞吐后岩心孔隙结构发生明显变化,页岩砂砾含量不同是导致页岩吞吐前后孔隙结构变化差异大的重要原因。研究成果可为古龙页岩油矿场实践提供重要的基础参数。 展开更多
关键词 古龙页岩油 孔隙结构 CO_(2)驱替 CO_(2)吞吐 高温高压 核磁共振
下载PDF
基于地震波形驱动层序格架建立及页岩岩相特征研究--以松辽盆地古龙页岩油5号试验区为例
17
作者 何文渊 裴明波 《中国石油勘探》 CAS CSCD 北大核心 2024年第2期123-133,共11页
松辽盆地古龙凹陷页岩油具有良好的富集条件和勘探开发潜力,已开展规模开发试验。目前,青山口组内部的细分层序地层研究还不够深入,影响古龙页岩油地质综合研究、甜点预测及部署。以松辽盆地古龙页岩油5号试验区为例,以地震层序地层学... 松辽盆地古龙凹陷页岩油具有良好的富集条件和勘探开发潜力,已开展规模开发试验。目前,青山口组内部的细分层序地层研究还不够深入,影响古龙页岩油地质综合研究、甜点预测及部署。以松辽盆地古龙页岩油5号试验区为例,以地震层序地层学理论为指导,针对页岩型页岩油横向沉积相对稳定的特点,采用各向异性扩散滤波、层序识别与选取等手段,地震处理、解释及地质结合,使得地震波形可指示地质层位,形成基于地震波形驱动的层序格架建立技术。该技术实现了地震波形向沉积地层地质含义的快速转化,在研究区青山口组识别出1个二级、1个三级及8个四级层序界面,划分为Q1—Q9共9个小层,分析了各小层的格架特征,为页岩油岩相和甜点精细预测奠定基础。基于细分层地层格架,通过分析TOC、沉积构造、矿物成分、页理密度4个评价参数,建立了古龙页岩油页岩型岩相划分标准,划分为10类亚相。以研究区Q1—Q4小层为例,页岩岩相划分为3类亚相,描述了其平面分布特征。基于以上研究,结合含油性、脆性及物性等6个页岩油甜点参数的预测成果,在5号试验区优化布井11口,单井平均日产油在10t以上,有效支撑了松辽盆地古龙页岩油的效益勘探开发。 展开更多
关键词 古龙凹陷 青山口组 页岩油 地震波形 层序格架 古地貌分析 岩相特征
下载PDF
松辽盆地古龙凹陷白垩系青山口组页岩油储层中微米孔缝特征及油气意义
18
作者 何文渊 赵莹 +1 位作者 钟建华 孙宁亮 《岩性油气藏》 CAS CSCD 北大核心 2024年第3期1-18,共18页
通过岩心观察、薄片鉴定、电子背散射、二次成像及能谱分析等多种实验手段,对松辽盆地古龙凹陷白垩系青山口组页岩油储层中的微米孔和微米缝进行了研究。研究结果表明:(1)古龙凹陷页岩油储层岩性为以页岩为主的细粒碎屑岩,矿物成分以黏... 通过岩心观察、薄片鉴定、电子背散射、二次成像及能谱分析等多种实验手段,对松辽盆地古龙凹陷白垩系青山口组页岩油储层中的微米孔和微米缝进行了研究。研究结果表明:(1)古龙凹陷页岩油储层岩性为以页岩为主的细粒碎屑岩,矿物成分以黏土和长英质为主,在结构上显示出泥岩或页岩的特点,整体为长英质页岩;储层中微米孔、缝发育,类型多样。(2)研究区微米孔直径一般为1~2μm,最大可达70μm,多呈近圆形、扁圆形、多角形和不规则形,按成因可分为压实应力屏蔽孔、成岩自生孔、溶蚀孔、生排烃扩张孔、有机质孔和硅藻残留孔6类;压实应力屏蔽孔多发育在刚性矿物的两侧;成岩自生孔常发育在白云石、绿泥石、伊利石等成岩自生矿物中,以晶间孔为主;溶蚀孔多发育在碳酸盐矿物中,内部可见次生菌丝状絮凝体;生排烃扩张孔多呈垂直或近垂直成列产出,与轻质油形成的二次生烃和排烃有关;有机质孔发育在有机质内部,与植物的残留细胞及轻质油和天然气的充填有关;硅藻残留孔主要发育在硅藻内部和边缘,孔径较大,一般为数微米至数十微米。(3)研究区微米缝以顺层为主,宽一般为1~10μm,最大可达100μm,长主要为数微米至数十微米,可见毫米级;可分为成岩收缩缝、溶蚀缝、生排烃扩张缝和构造/剪切缝4类,成岩收缩缝以张性缝为主,缝弯曲,缝壁参差不齐;溶蚀缝宽度可达60~70μm,裂缝内可见自生黏土,缝两侧有黄铁矿、磷灰石和白云石等自生矿物;生排烃扩张缝两侧多锯齿状参差不齐,绕过刚性矿物;构造/剪切微米缝一般平直,有与剪切相关的其他裂缝伴生。(4)研究区不同尺度的孔、缝之间连通性较好,形成了“纳米孔+纳米缝、微米孔+微米缝、毫米孔+毫米缝”三级储集和输导体系。 展开更多
关键词 微米孔 微米缝 储集空间 连通性 页岩油储层 青山口组 白垩系 古龙凹陷 松辽盆地
下载PDF
陆相页岩油可动烃富集因素与古龙页岩油勘探潜力评价 被引量:10
19
作者 赵文智 卞从胜 +9 位作者 李永新 张金友 何坤 刘伟 张斌 雷征东 刘畅 张婧雅 关铭 刘诗局 《石油勘探与开发》 SCIE EI CAS CSCD 北大核心 2023年第3期455-467,共13页
通过对中国主要中高熟页岩油探区的地质特征和生产实践分析,结合分析化验结果,提出陆相页岩油能否投入规模开发需要兼备3个条件:初始产量有经济性、单井累计采油量有经济性与经试采证实的可动用储量有规模,明确了可动烃数量与品质是决... 通过对中国主要中高熟页岩油探区的地质特征和生产实践分析,结合分析化验结果,提出陆相页岩油能否投入规模开发需要兼备3个条件:初始产量有经济性、单井累计采油量有经济性与经试采证实的可动用储量有规模,明确了可动烃数量与品质是决定页岩油能否经济开发的关键,也是页岩油富集区/段评价需要关注的重点。研究提出可动烃富集评价指标包括:(1)形成滞留烃的物质基础,以TOC>2%为必要条件,3%~4%最好,母质类型为Ⅰ—Ⅱ1型;(2)滞留烃流动性,与烃组分构成及其中轻/重烃组分流动特征密切相关,可从热成熟度(R_(o))、气油比(GOR)、原油密度、烃组分构成品质、保存条件等方面评价;(3)工程关联要素,包括孔喉主分布区、储集物性(含裂缝)、页理特征与成岩阶段。据此建立3类13项评价指标及参考值,评价认为古龙页岩油轻质油带可动烃富集条件最有利,其次为稀油带和黑油带,其中R_(o)>1.2%、压力系数大于1.4、有效孔隙度大于6%、原油密度小于0.82 g/cm^(3)与GOR>100m^(3)/m^(3)的轻质油资源量20.8×10^(8)t。古龙页岩油可依据页岩油流动特征,按资源甜点、工程甜点和致密油型甜点分类勘探开发,是中国最具希望实现规模突破和建产的陆相页岩油分布区。 展开更多
关键词 古龙凹陷 陆相页岩油 可动烃富集因素 富集区/段评价 物质基础 烃组分流动 工程关联要素
下载PDF
松辽盆地古龙凹陷白垩系青山口组页岩层序等时格架下的有机质分布规律 被引量:1
20
作者 张天舒 朱如凯 +13 位作者 蔡毅 王华建 吕丹 周海燕 付秀丽 刘畅 崔坤宁 张素荣 王浡 吴松涛 张婧雅 姜晓华 冯有良 刘合 《石油与天然气地质》 EI CAS CSCD 北大核心 2023年第4期869-886,共18页
松辽盆地古龙凹陷白垩系青山口组陆相纯页岩型页岩油获得高产突破,但古龙页岩有机质分布的非均质性强,主控因素不清,制约有利区和甜点段预测。通过精细分析岩心、露头、薄片、地震、测井、地球化学和古生物等数据,针对湖相深水页岩特点... 松辽盆地古龙凹陷白垩系青山口组陆相纯页岩型页岩油获得高产突破,但古龙页岩有机质分布的非均质性强,主控因素不清,制约有利区和甜点段预测。通过精细分析岩心、露头、薄片、地震、测井、地球化学和古生物等数据,针对湖相深水页岩特点,基于“层序等级”与“湖侵-湖退(T-R)旋回”理论,结合天文旋回研究进展,建立了深湖区高频层序等时格架。通过类比现代湖泊,建立了古湖泊沉积环境判识指标,分析了古生产力、氧化还原环境及沉积速率的耦合关系,探讨了高频层序格架下有机质富集非均质性的成因。研究认为:①古龙凹陷青山口组可划分为4个三级层序,其中,层序1和层序2识别出2个T-R旋回,由13个准层序组(52个准层序)构成;准层序和准层序组的沉积时长分别为约40 kyr和170 kyr。②层序格架下页岩发育3种岩相、4种纹层、5种组合类型、11种纹层组合模式和3种沉积微相;T-R旋回控制了沉积微相、岩相和纹层组合的纵向分布,其中,深湖相静水沉积和泥流沉积的黏土质页岩为有利岩相。③T-R旋回控制了有机质分布,湖泛面附近是有利部位;有利区/段为古龙凹陷的准层序组2以及三肇凹陷的准层序组1—4。该研究成果能够为页岩油有利区和甜点段预测提供沉积学依据。 展开更多
关键词 有机质富集 沉积环境 层序地层 古龙页岩 松辽盆地
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部