期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
H-反射恢复曲线和H-反射的交互抑制在脑硬塞后肌痉挛病人上支的应用和分析 被引量:3
1
作者 黄同伟 李青云 王亚君 《伤残医学杂志》 1999年第2期59-60,共2页
本文研究脑梗塞后痉挛病人前臂H-反射恢复曲线和H-反射的交互抑制,目的是确定临床参数对这两种试验的电生理学表现及临床预后的判定。 临床资料 1 一般资料:对H-反射恢复曲线的研究,以83例脑梗塞后痉挛病人为研究组,年龄30岁~78岁:35... 本文研究脑梗塞后痉挛病人前臂H-反射恢复曲线和H-反射的交互抑制,目的是确定临床参数对这两种试验的电生理学表现及临床预后的判定。 临床资料 1 一般资料:对H-反射恢复曲线的研究,以83例脑梗塞后痉挛病人为研究组,年龄30岁~78岁:35名健康自愿者为对照组。 展开更多
关键词 h-反射恢复曲线 脑梗塞 肌痉挛病 应用
原文传递
平面三次混合双曲多项式曲线的特征图判别 被引量:1
2
作者 魏永伟 曹娟 汪国昭 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2010年第5期833-837,共5页
根据文献[9](Wang G Z,Yang Q M.Planar cubic hybrid hyperbolic polynomial curve and its shape classification.Progress in Natural Science,2004,14(1):41-46)中提出的H-曲线带奇点或拐点的条件,利用H-曲线奇点、拐点的仿射不变性... 根据文献[9](Wang G Z,Yang Q M.Planar cubic hybrid hyperbolic polynomial curve and its shape classification.Progress in Natural Science,2004,14(1):41-46)中提出的H-曲线带奇点或拐点的条件,利用H-曲线奇点、拐点的仿射不变性,给出H-曲线几何特征图的判别法,并找到了不同特征图在三维空间中的关系.该判别法完善了H-曲线的奇异点检测理论,提升了几何特征图维数. 展开更多
关键词 平面三次混合双曲多项式曲线 h-曲线 h-Bézier曲线 特征图 奇点 拐点
下载PDF
液氮的冲击压缩理论计算 被引量:6
3
作者 杨向东 谢文 +2 位作者 武保剑 胡栋 经福谦 《高压物理学报》 CAS CSCD 北大核心 1998年第1期1-7,共7页
使用修正的WCA状态方程研究液氮的冲击压缩特性,并利用exp-6形式的势函数、用Ross变分微扰理论计算分子间相互作用贡献的自由能。计算的液氮冲击压缩Hugoniot曲线与实验数据符合较好。
关键词 液氮 WCA 状态方程 h-曲线 冲击压缩
下载PDF
SHAPE ANALYSIS FOR A KIND OF RATIONAL PARAMETRIC CUBIC CURVES
4
作者 刘萍 王宁 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2001年第2期240-244,共5页
A rational parametric planar cubic H spline curve is defined by a set of control vertices in a plane and percentage factors of line segments between every two control vertices. Movement of any control vertex affects ... A rational parametric planar cubic H spline curve is defined by a set of control vertices in a plane and percentage factors of line segments between every two control vertices. Movement of any control vertex affects three curve segments. This paper is the succession and development of reference of Tang Yuehong. We analyze the geometric features like cusps and inflection points in the curve and calculate the cusps and inflection points, then give a necessary and sufficient condition to the inflection points in the curve when it is non degenerative, and finally show that the curves have no cusps in the interval (0,1). In many applications, it is desirable to analyze the parametric curves for undesirable features like cusps and inflection points 展开更多
关键词 algebraic curve H splines CUSPS inflection points
下载PDF
Complex seismic wavefi eld interpolation based on the Bregman iteration method in the sparse transform domain 被引量:2
5
作者 勾福岩 刘财 +2 位作者 刘洋 冯晅 崔芳姿 《Applied Geophysics》 SCIE CSCD 2014年第3期277-288,350,351,共14页
In seismic prospecting, fi eld conditions and other factors hamper the recording of the complete seismic wavefi eld; thus, data interpolation is critical in seismic data processing. Especially, in complex conditions, ... In seismic prospecting, fi eld conditions and other factors hamper the recording of the complete seismic wavefi eld; thus, data interpolation is critical in seismic data processing. Especially, in complex conditions, prestack missing data affect the subsequent highprecision data processing workfl ow. Compressive sensing is an effective strategy for seismic data interpolation by optimally representing the complex seismic wavefi eld and using fast and accurate iterative algorithms. The seislet transform is a sparse multiscale transform well suited for representing the seismic wavefield, as it can effectively compress seismic events. Furthermore, the Bregman iterative algorithm is an efficient algorithm for sparse representation in compressive sensing. Seismic data interpolation methods can be developed by combining seismic dynamic prediction, image transform, and compressive sensing. In this study, we link seismic data interpolation and constrained optimization. We selected the OC-seislet sparse transform to represent complex wavefields and used the Bregman iteration method to solve the hybrid norm inverse problem under the compressed sensing framework. In addition, we used an H-curve method to choose the threshold parameter in the Bregman iteration method. Thus, we achieved fast and accurate reconstruction of the seismic wavefi eld. Model and fi eld data tests demonstrate that the Bregman iteration method based on the H-curve norm in the sparse transform domain can effectively reconstruct missing complex wavefi eld data. 展开更多
关键词 Bregman iteration OC-seislet transform seismic data interpolation compressive sensing h-curve norm
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部