Based on the structure design and results of neutronics analysis of the CH HCSB TBM (Chinese helium cooled solid breeder test blanket module), thermal hydraulic and mechanical analyses have been carried out. Results s...Based on the structure design and results of neutronics analysis of the CH HCSB TBM (Chinese helium cooled solid breeder test blanket module), thermal hydraulic and mechanical analyses have been carried out. Results show that the design of the CH HCSB TBM is reasonable and acceptable.展开更多
CH-HCSB TBM is designed to test the feasibility of DEMO fusion reactor on ITER. A safety assessment has to demonstrate that the TBM with its own cooling system does not impede the safe operation of ITER under normal a...CH-HCSB TBM is designed to test the feasibility of DEMO fusion reactor on ITER. A safety assessment has to demonstrate that the TBM with its own cooling system does not impede the safe operation of ITER under normal and accidental conditions. For analysis of the highly transient accident sequences, a RELAP5 model has been developed for the HCS and TBM system. The steady-state, In-Vessel LOCA, Ex-Vessel LOCA and In-Box LOCA have been analyzed and the designed TBM steady-state inlet/outlet temperatures have been obtained. In all LOCA accidents, the Ex-Vessel LOCA is the most dangerous accident because of the melting of the First Wall. Based on the results, the design of TBM could be modified further in order to improve the safety of TBM and ITER.展开更多
India has proposed the helium-cooled solid breeder blanket concept as a tritium breeding module to be tested in ITER.The module has lithium titanate for tritium breeding and beryllium for neutron multiplication.Beryll...India has proposed the helium-cooled solid breeder blanket concept as a tritium breeding module to be tested in ITER.The module has lithium titanate for tritium breeding and beryllium for neutron multiplication.Beryllium also enhances tritium breeding.A design for the module is prepared for detailed analysis.Neutronic analysis is performed to assess the tritium breeding rate,neutron distribution,and heat distribution in the module.The tritium production distribution in submodules is evaluated to support the tritium transport analysis.The tritium breeding density in the radial direction of the module is also assessed for further optimization of the design.The heat deposition profile of the entire module is generated to support the heat removal circuit design.The estimated neutron spectrum in the radial direction also provides a more in-depth picture of the nuclear interactions inside the material zones.The total tritium produced in the HCSB module is around 13.87 mg per full day of operation of ITER,considering the 400 s ON time and 1400 s dwell time.The estimated nuclear heat load on the entire module is around 474 kW,which will be removed by the high-pressure helium cooling circuit.The heat deposition in the test blanket model(TBM)is huge(around 9 GJ)for an entire day of operation of ITER,which demonstrates the scale of power that can be produced through a fusion reactor blanket.As per the Brayton cycle,it is equivalent to 3.6 GJ of electrical energy.In terms of power production,this would be around 1655 MWh annually.The evaluation is carried out using the MCNP5 Monte Carlo radiation transport code and FEDNL 2.1 nuclear cross section data.The HCSB TBM neutronic performance demonstrates the tritium production capability and high heat deposition.展开更多
文摘Based on the structure design and results of neutronics analysis of the CH HCSB TBM (Chinese helium cooled solid breeder test blanket module), thermal hydraulic and mechanical analyses have been carried out. Results show that the design of the CH HCSB TBM is reasonable and acceptable.
文摘CH-HCSB TBM is designed to test the feasibility of DEMO fusion reactor on ITER. A safety assessment has to demonstrate that the TBM with its own cooling system does not impede the safe operation of ITER under normal and accidental conditions. For analysis of the highly transient accident sequences, a RELAP5 model has been developed for the HCS and TBM system. The steady-state, In-Vessel LOCA, Ex-Vessel LOCA and In-Box LOCA have been analyzed and the designed TBM steady-state inlet/outlet temperatures have been obtained. In all LOCA accidents, the Ex-Vessel LOCA is the most dangerous accident because of the melting of the First Wall. Based on the results, the design of TBM could be modified further in order to improve the safety of TBM and ITER.
文摘India has proposed the helium-cooled solid breeder blanket concept as a tritium breeding module to be tested in ITER.The module has lithium titanate for tritium breeding and beryllium for neutron multiplication.Beryllium also enhances tritium breeding.A design for the module is prepared for detailed analysis.Neutronic analysis is performed to assess the tritium breeding rate,neutron distribution,and heat distribution in the module.The tritium production distribution in submodules is evaluated to support the tritium transport analysis.The tritium breeding density in the radial direction of the module is also assessed for further optimization of the design.The heat deposition profile of the entire module is generated to support the heat removal circuit design.The estimated neutron spectrum in the radial direction also provides a more in-depth picture of the nuclear interactions inside the material zones.The total tritium produced in the HCSB module is around 13.87 mg per full day of operation of ITER,considering the 400 s ON time and 1400 s dwell time.The estimated nuclear heat load on the entire module is around 474 kW,which will be removed by the high-pressure helium cooling circuit.The heat deposition in the test blanket model(TBM)is huge(around 9 GJ)for an entire day of operation of ITER,which demonstrates the scale of power that can be produced through a fusion reactor blanket.As per the Brayton cycle,it is equivalent to 3.6 GJ of electrical energy.In terms of power production,this would be around 1655 MWh annually.The evaluation is carried out using the MCNP5 Monte Carlo radiation transport code and FEDNL 2.1 nuclear cross section data.The HCSB TBM neutronic performance demonstrates the tritium production capability and high heat deposition.