[Objectives]To observe the effects of Cigu Xiaozhi Formula on miR-378a-3p expression and Hh signaling pathway in TGF-β1 induced and activated LX2 cells.[Methods]Cells were divided into control group,induction group,d...[Objectives]To observe the effects of Cigu Xiaozhi Formula on miR-378a-3p expression and Hh signaling pathway in TGF-β1 induced and activated LX2 cells.[Methods]Cells were divided into control group,induction group,drug-containing serum group,miR-378a-3p inhibitor group,and miR inhibitor NC group.CCK-8 method was used to detect the cell viability of each group,and flow cytometry was used to detect the apoptosis rate of each group.RT-qPCR was used to detect the expression of miR-378a-3p in each group s cells,and RT-qPCR and Western blot were used to detect mRNA and protein expression of Shh,Gli1,Gli2,Col-I,andα-SMA in each group s cells.[Results]Compared with the control group,the cell viability and expression of Shh,Gli1,Gli2,Col-I,andα-SMA mRNA and protein in induction group increased(P<0.01),while the expression of miR-378a-3p decreased(P<0.01).Compared with the induction group,the cell viability and expression of Shh,Gli1,Gli2,Col-I,α-SMA mRNA andα-SMA and Gli2 protein decreased in drug-containing serum group(P<0.05),while cell apoptosis rate and miR-378a-3p expression increased(P<0.01).In miR-378a-3p inhibitor group,cell viability and the expression of Shh,Gli1,Gli2,Col-I,α-SMA mRNA and Gli1,Gli2,α-SMA protein increased(P<0.05,P<0.01),while the apoptosis rate and miR-378a-3p expression decreased(P<0.05,P<0.01).[Conclusions]Cigu Xiaozhi Formula containing serum can upregulate miR-378a-3p expression and downregulate the expression of Gli2 andα-SMA in TGF-β1 induced LX2 cells,thereby inhibiting the activation of LX2 cells and exerting the effects of anti liver fibrosis.展开更多
The hedgehog (Hh) signaling pathway plays an essential role in the embryonic development and homeostasis of diverse adult tissues, and its deregulation has been implicated in the tumorigenesis and metastasis of vari...The hedgehog (Hh) signaling pathway plays an essential role in the embryonic development and homeostasis of diverse adult tissues, and its deregulation has been implicated in the tumorigenesis and metastasis of various malignancies including breast cancer. Aberrant activation of the Hh pathway includes the following mechanisms: (I) Hh ligand-independent mechanism - Loss of function mutations in the Hh receptor Patched 1 (PTCH1) or gain of function mutations in the Smoothened (SMO) lead to constitutive activation of this pathway; (II) Autocrine signaling- Ith ligand produced by tumor cells stimulates the Hh signaling in tumor cells; (III) Paracrine signaling - tumor cell produced-Hh ligand activates stromal and endothelial cells that produce growth factors in microenvironment for supporting tumor growth and survival; and (IV) Reverse paracrine signaling - Hh ligand produced by stromal cells support tumor growth and survival. Upon the pathway activation, the Gli transcription factors, effectors of the Hh signaling, activate or inhibit transcription by binding to their responsive genes and interacting with the transcriptional complex. The Gli transcription factor family includes Glil, Gli2, and Gli3 (1). Glil is a transcriptional activator whose expression has been recognized as an activation state of the Hh signaling pathway, Gli2 is either an activator or repressor, and Gli3 is a strong repressor of transcriptional activities. To date, a ligand-dependent autocrine model of activating the Hh signaling has been described in breast cancer, and both an autocrine and paracrine mechanisms in colorectal cancer, pancreatic cancer and prostate cancer (2,3). Notably, a ligand-independent mechanism (mutationsin PTCHI and SMO) of the signaling has been well demonstrated in basal cell carcinoma and medulloblastoma (4,5).展开更多
基金Supported by Regional Fund Project of National Natural Science Foundation of China(81860821)Gansu Province Higher Education Innovation Ability Enhancement Project in 2019(2019B-104)Innovation and Entrepreneurship Fund for Graduate Students of Gansu University of Chinese Medicine(2022CX64).
文摘[Objectives]To observe the effects of Cigu Xiaozhi Formula on miR-378a-3p expression and Hh signaling pathway in TGF-β1 induced and activated LX2 cells.[Methods]Cells were divided into control group,induction group,drug-containing serum group,miR-378a-3p inhibitor group,and miR inhibitor NC group.CCK-8 method was used to detect the cell viability of each group,and flow cytometry was used to detect the apoptosis rate of each group.RT-qPCR was used to detect the expression of miR-378a-3p in each group s cells,and RT-qPCR and Western blot were used to detect mRNA and protein expression of Shh,Gli1,Gli2,Col-I,andα-SMA in each group s cells.[Results]Compared with the control group,the cell viability and expression of Shh,Gli1,Gli2,Col-I,andα-SMA mRNA and protein in induction group increased(P<0.01),while the expression of miR-378a-3p decreased(P<0.01).Compared with the induction group,the cell viability and expression of Shh,Gli1,Gli2,Col-I,α-SMA mRNA andα-SMA and Gli2 protein decreased in drug-containing serum group(P<0.05),while cell apoptosis rate and miR-378a-3p expression increased(P<0.01).In miR-378a-3p inhibitor group,cell viability and the expression of Shh,Gli1,Gli2,Col-I,α-SMA mRNA and Gli1,Gli2,α-SMA protein increased(P<0.05,P<0.01),while the apoptosis rate and miR-378a-3p expression decreased(P<0.05,P<0.01).[Conclusions]Cigu Xiaozhi Formula containing serum can upregulate miR-378a-3p expression and downregulate the expression of Gli2 andα-SMA in TGF-β1 induced LX2 cells,thereby inhibiting the activation of LX2 cells and exerting the effects of anti liver fibrosis.
文摘The hedgehog (Hh) signaling pathway plays an essential role in the embryonic development and homeostasis of diverse adult tissues, and its deregulation has been implicated in the tumorigenesis and metastasis of various malignancies including breast cancer. Aberrant activation of the Hh pathway includes the following mechanisms: (I) Hh ligand-independent mechanism - Loss of function mutations in the Hh receptor Patched 1 (PTCH1) or gain of function mutations in the Smoothened (SMO) lead to constitutive activation of this pathway; (II) Autocrine signaling- Ith ligand produced by tumor cells stimulates the Hh signaling in tumor cells; (III) Paracrine signaling - tumor cell produced-Hh ligand activates stromal and endothelial cells that produce growth factors in microenvironment for supporting tumor growth and survival; and (IV) Reverse paracrine signaling - Hh ligand produced by stromal cells support tumor growth and survival. Upon the pathway activation, the Gli transcription factors, effectors of the Hh signaling, activate or inhibit transcription by binding to their responsive genes and interacting with the transcriptional complex. The Gli transcription factor family includes Glil, Gli2, and Gli3 (1). Glil is a transcriptional activator whose expression has been recognized as an activation state of the Hh signaling pathway, Gli2 is either an activator or repressor, and Gli3 is a strong repressor of transcriptional activities. To date, a ligand-dependent autocrine model of activating the Hh signaling has been described in breast cancer, and both an autocrine and paracrine mechanisms in colorectal cancer, pancreatic cancer and prostate cancer (2,3). Notably, a ligand-independent mechanism (mutationsin PTCHI and SMO) of the signaling has been well demonstrated in basal cell carcinoma and medulloblastoma (4,5).