In this study, the reaction characteristics of reduction of calcined dolomite with ferrosilicon under argon flow to produce magnesium were studied by conducting experiments Pidgeon pellets were used to study the effec...In this study, the reaction characteristics of reduction of calcined dolomite with ferrosilicon under argon flow to produce magnesium were studied by conducting experiments Pidgeon pellets were used to study the effect of reduced temperature, argon flow, and reduced time on the conversion of calcined dolomite reduction by ferrosilicon. The results show that the conversion significantly increases with the increase in the reduction temperature and reduction time. The conversion first increases and then decreases with the increase in argon flow. The highest conversion was obtained when the argon flow rate was 3 L·min^(-1), and a nearly spherical shape, nanoscale magnesium powder was obtained. Then the characters of the circulating argon entrainment process were numerically studied by ANSYS Fluent 17. A physical model of multilayer pellet arrangement was established, and a numerical calculation model of chemical reaction, radiation, heat conduction, and convection heat transfer was constructed. This confirms that high-temperature argon can effectively strengthen the heat exchange between pellets, improve the heat transfer efficiency, and facilitate the pellets to react quickly. When the conversion is 80%, the production efficiency increased by about 28.6%. In addition, the magnesium production efficiency showed an increase tendency with the increase of the argon inlet flow rate.展开更多
基金supported by Key Program of the National Natural Science Foundation of China (Grant No.92062223)the National Natural Science Foundation of China (Grant No.51804277)Anhui University Natural Science Research Project (KJ20190048)。
文摘In this study, the reaction characteristics of reduction of calcined dolomite with ferrosilicon under argon flow to produce magnesium were studied by conducting experiments Pidgeon pellets were used to study the effect of reduced temperature, argon flow, and reduced time on the conversion of calcined dolomite reduction by ferrosilicon. The results show that the conversion significantly increases with the increase in the reduction temperature and reduction time. The conversion first increases and then decreases with the increase in argon flow. The highest conversion was obtained when the argon flow rate was 3 L·min^(-1), and a nearly spherical shape, nanoscale magnesium powder was obtained. Then the characters of the circulating argon entrainment process were numerically studied by ANSYS Fluent 17. A physical model of multilayer pellet arrangement was established, and a numerical calculation model of chemical reaction, radiation, heat conduction, and convection heat transfer was constructed. This confirms that high-temperature argon can effectively strengthen the heat exchange between pellets, improve the heat transfer efficiency, and facilitate the pellets to react quickly. When the conversion is 80%, the production efficiency increased by about 28.6%. In addition, the magnesium production efficiency showed an increase tendency with the increase of the argon inlet flow rate.