期刊文献+
共找到2,108篇文章
< 1 2 106 >
每页显示 20 50 100
EXPERIMENTAL STUDY OF COCHLEAR HAIR CELL LOSS IN THE GUINEA PIG
1
作者 朱宏亮 《Journal of Pharmaceutical Analysis》 CAS 1994年第2期138-140,共3页
ZhuHongliang(朱宏亮)EXPERIMENTALSTUDYOFCOCHLEARHAIRCELLLOSSINTHEGUINEAPIGZhuHongliang(DepartmentofOtolaryngolog... ZhuHongliang(朱宏亮)EXPERIMENTALSTUDYOFCOCHLEARHAIRCELLLOSSINTHEGUINEAPIGZhuHongliang(DepartmentofOtolaryngology.FirstAffiliated... 展开更多
关键词 age SEX COCHLEA hair cell loss GUINEA pig
下载PDF
Recent progress in hair follicle stem cell markers and their regulatory roles
2
作者 Yi-Zhan Xing Hai-Ying Guo +1 位作者 Fei Xiang Yu-Hong Li 《World Journal of Stem Cells》 SCIE 2024年第2期126-136,共11页
Hair follicle stem cells(HFSCs)in the bulge are a multipotent adult stem cell population.They can periodically give rise to new HFs and even regenerate the epidermis and sebaceous glands during wound healing.An increa... Hair follicle stem cells(HFSCs)in the bulge are a multipotent adult stem cell population.They can periodically give rise to new HFs and even regenerate the epidermis and sebaceous glands during wound healing.An increasing number of biomarkers have been used to isolate,label,and trace HFSCs in recent years.Considering more detailed data from single-cell transcriptomics technology,we mainly focus on the important HFSC molecular markers and their regulatory roles in this review. 展开更多
关键词 hair follicle stem cells BULGE Secondary hair germ Marker Single-cell RNA-sequencing
下载PDF
Artificial nerve graft constructed by coculture of activated Schwann cells and human hair keratin for repair of peripheral nerve defects 被引量:1
3
作者 Han-Jun Qin Hang Li +5 位作者 Jun-Ze Chen Kai-Rui Zhang Xing-Qi Zhao Jian-Qiang Qin Bin Yu Jun Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第5期1118-1123,共6页
Studies have shown that human hair keratin(HHK) has no antigenicity and excellent mechanical properties. Schwann cells, as unique glial cells in the peripheral nervous system, can be induced by interleukin-1β to secr... Studies have shown that human hair keratin(HHK) has no antigenicity and excellent mechanical properties. Schwann cells, as unique glial cells in the peripheral nervous system, can be induced by interleukin-1β to secrete nerve growth factor, which promotes neural regeneration. Therefore, HHK with Schwann cells may be a more effective approach to repair nerve defects than HHK without Schwann cells. In this study, we established an artificial nerve graft by loading an HHK skeleton with activated Schwann cells. We found that the longitudinal HHK microfilament structure provided adhesion medium, space and direction for Schwann cells, and promoted Schwann cell growth and nerve fiber regeneration. In addition, interleukin-1β not only activates Schwann cells, but also strengthens their activity and increases the expression of nerve growth factors. Activated Schwann cells activate macrophages, and activated macrophages secrete interleukin-1β, which maintains the activity of Schwann cells. Thus, a beneficial cycle forms and promotes nerve repair. Furthermore, our studies have found that the newly constructed artificial nerve graft promotes the improvements in nerve conduction function and motor function in rats with sciatic nerve injury, and increases the expression of nerve injury repair factors fibroblast growth factor 2 and human transforming growth factor B receptor 2. These findings suggest that this artificial nerve graft effectively repairs peripheral nerve injury. 展开更多
关键词 artificial nerve graft bioactive human hair keratin INTERLEUKIN-1Β MACROPHAGES nerve graft nerve growth factor nerve repair peripheral nervous injury Schwann cells
下载PDF
The role of Rho GTPase family in cochlear hair cells and hearing
4
作者 Yu-Bei Dai Xiang Gao +1 位作者 Dong Liu Jie Gong 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第10期2167-2172,共6页
Rho GTPases are essential regulators of the actin cytoskeleton.They are involved in various physiological and biochemical processes such as the regulation of cytoskeleton dynamics,development,proliferation,survival,an... Rho GTPases are essential regulators of the actin cytoskeleton.They are involved in various physiological and biochemical processes such as the regulation of cytoskeleton dynamics,development,proliferation,survival,and regeneration.During the development of cochlear hair cells,Rho GTPases are activated by various extracellular signals through membrane receptors to further stimulate multiple downstream effectors.Specifically,RhoA,Cdc42,and Rac1,members of the classical subfamily of the Rho GTPase family,regulate the development and maintenance of cilia by inducing the polymerization of actin monomers and stabilizing actin filaments.In addition,they also regulate the normal morphology orientation of ciliary bundles in auditory hair cells,which is an important element of cell polarity regulation.Moreover,the actin-related pathways mediated by RhoA,Cdc42,and Rac1 also play a role in the motility of outer hair cells,indicating that the function of Rho GTPases is crucial in the highly polar auditory sensory system.In this review,we focus on the expression of RhoA,Cdc42,and Rac1 in cochlear hair cells and how these small molecules participate in ciliary bundle morphogenesis and cochlear hair cell movement.We also discuss the progress of current research investigating the use of these small molecules as drug targets for deafness treatment. 展开更多
关键词 actin assembly auditory sensory neurons cell polarity cell proliferation ELECTROMOTILITY hair cell hearing loss MORPHOGENESIS Rho GTPases STEREOCILIA
下载PDF
Isolation and Identification of Fungi That Cause Hair Loss (Alopecia)
5
作者 Mohammed Mousa Atta Falah Abdulhassan Hussein 《Advances in Bioscience and Biotechnology》 2023年第7期337-345,共9页
Due to the crowded number of female students in a very narrow place, the fact that the college is for females only, and the fact that some of the female students live in the internal sections of the student residence,... Due to the crowded number of female students in a very narrow place, the fact that the college is for females only, and the fact that some of the female students live in the internal sections of the student residence, as well as the crowded number there, and as a result of the presence of the head covering or what is known as the Islamic veil on the head, which covers the hair of the head, which provides a suitable hot humid atmosphere 100% of fungal growth in the scalp of female students. Therefore, it is necessary to know the widespread fungal species that contaminate the scalp. In other research, we learn about the antifungals that should be used to reduce fungal infections in college employees. The study was carried out to identify the presence and spread of fungi that cause hair loss. The study was conducted on some students of the College of Education for Girls/University of Shatra for the period from 1/11/2021 to 1/12/2021, where 100 hundred hair samples were collected from (the scalp) from different ages in different educational stages, as random samples were taken after asking the student whether she suffers from hair loss or not, and studying the presence and spread of fungi in terms of density and type, after transferring them to the microbiology laboratory-College of Education for Girls using sterile sample collection bags. The current results showed that the fungal species E. flocculosum is the most common among them, followed by the fungal species C. carrionii, then the rest of the genera are as follows: E. flocculosum, Basisdioplus, Aspergillus terreud Hormderndrum Rhodotorula, Bipolaris, Aspergillus, Phoma, Rhizopus, Blastomyces, Microsporum, Sporothrix, Exophiala jeanselmei, Neoscytalidium Aeremonium Cladophialophora carrionii, Paecilomyces, Exophiala dermatitidis, Geotrichum, Volvariella, Rhizomucor, Saksmaea vassiformis, Candida albicans, Chrysosporium, Dimiatum. 展开更多
关键词 FUNGI hair loss Female Students Shatra
下载PDF
Therapeutic Approach for Hair Growth and Regeneration Using Bioactive Formulation Containing Mesenchymal Stromal Cell-Derived Conditioned Medium
6
作者 Pawan Kumar Gupta Samatha Bhat +2 位作者 Suresh Kannan Raviraja N. Seetharam Udaykumar Kolkundkar 《Journal of Cosmetics, Dermatological Sciences and Applications》 2023年第3期182-208,共27页
Background and Aims: Androgenetic alopecia (AGA) is a common form of hair loss in both men and women. Despite its high prevalence and associated patient morbidity, the approved therapeutic options are limited to finas... Background and Aims: Androgenetic alopecia (AGA) is a common form of hair loss in both men and women. Despite its high prevalence and associated patient morbidity, the approved therapeutic options are limited to finasteride and minoxidil. The present study is aimed at assessing the efficacy of hair serum formulation, Trichosera<sup>®</sup>containing Bone marrow-derived mesenchymal stromal cells conditioned media as an active ingredient, for hair fall control and hair regrowth in healthy Indian human volunteers. Methods: The product was made using a 20% concentration of 10X Conditioned Media along with excipients. The final product was tested for physicochemical parameters, biomarkers, total protein content and microbial limits as per our in-house specifications. Results: The primary irritation patch test showed that the product is non-irritant and dermatologically safe. A clinical study on 40 subjects was conducted to evaluate the effectiveness of the bioactive formulation in hair fall control and hair regrowth in healthy volunteers. Phototrichogram measurement showed hair density and hair growth rate increased significantly by 11.54% and 18.66% at week 24. Hair tensile strength also increased significantly by 41.10% at 12 weeks follow-up. Hair pull test, to see a reduction in pulled hair and comb’s test to show a decrease in hair fall significantly improved from week 4 onwards. There were no significant adverse events in response to the product application. Conclusion: It is concluded that the hair serum product is completely safe on direct application to the scalp and showed significant improvement in the hair growth rate, hair density, scalp condition and reduction in hair fall. . 展开更多
关键词 Trichosera® Bone Marrow Derived Mesenchymal Stromal cells Conditioned Media hair Fall hair Regrowth Human Volunteer Study
下载PDF
Disruption of the autism-related gene Pak1 causes stereocilia disorganization,hair cell loss,and deafness in mice
7
作者 Cheng Cheng Yilin Hou +14 位作者 Zhonghong Zhang Yanfei Wang Ling Lu Liyan Zhang Pei Jiang Song Gao Qiaojun Fang Chengwen Zhu Junyan Gao Xufeng Liu Wei Xie Zhengping Jia Zhigang Xu Xia Gao Renjie Chai 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2021年第4期324-332,共9页
Several clinical studies have reported that hearing loss is correlated with autism in children.However,little is known about the underlying mechanism between hearing loss and autism.p21-activated kinases(PAKs)are a fa... Several clinical studies have reported that hearing loss is correlated with autism in children.However,little is known about the underlying mechanism between hearing loss and autism.p21-activated kinases(PAKs)are a family of serine/threonine kinases that can be activated by multiple signaling molecules,particularly the Rho family of small GTPases.Previous studies have shown that Pak1 mutations are associated with autism.In the present study,we take advantage of Pak1 knockout(Pak1a/a)mice to investigate the role of PAK1 in hearing function.We find that PAK1 is highly expressed in the postnatal mouse cochlea and that PAK1 deficiency leads to hair cell(HC)apoptosis and severe hearing loss.Further investigation indicates that PAK1 deficiency downregulates the phosphorylation of cofilin and ezrin-radixin-moesin and the expression of b II-spectrin,which further decreases the HC synapse density in the basal turn of cochlea and disorganized the HC stereocilia in all three turns of cochlea in Pak1à/àmice.Overall,our work demonstrates that the autism-related gene Pak1 plays a crucial role in hearing function.As the first candidate gene linking autism and hearing loss,Pak1 may serve as a potential target for the clinical diagnosis of autism-related hearing loss. 展开更多
关键词 PAK1 Hearing loss Synapse hair bundle ERM
原文传递
Notch pathway inhibitor DAPT enhances Atoh1 activity to generate new hair cells in situ in rat cochleae 被引量:6
8
作者 Wen-wei Luo Zhao Han +3 位作者 Dong-dong Ren Xin-wei Wang Fang-lu Chi Juan-mei Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第12期2092-2099,共8页
Atoh1 overexpression in cochlear epithelium induces new hair cell formation. Use of adenovirus-mediated Atoh1 overexpression has mainly focused on the rat lesser epithelial ridge and induces ectopic hair cell regenera... Atoh1 overexpression in cochlear epithelium induces new hair cell formation. Use of adenovirus-mediated Atoh1 overexpression has mainly focused on the rat lesser epithelial ridge and induces ectopic hair cell regeneration. The sensory region of rat cochlea is difficult to transfect, thus new hair cells are rarely produced in situ in rat cochlear explants. After culturing rat cochleae in medium containing 10% fetal bovine serum, adenovirus successfully infected the sensory region as the width of the supporting cell area was significantly increased. Adenovirus encoding Atoh1 infected the sensory region and induced hair cell formation in situ. Combined application of the Notch inhibitor DAPT and Atoh1 increased the Atoh1 expression level and decreased hes1 and hes5 levels, further promoting hair cell generation. Our results demonstrate that DAPT enhances Atoh1 activity to promote hair cell regeneration in rat cochlear sensory epithelium in vitro. 展开更多
关键词 nerve regeneration Atoh1 DAPT TRANSDIFFERENTIATION gamma secretase inhibitor COCHLEA sensory epithelium fetal bovine serum hair cell supporting cell hair cell regeneration neural regeneration
下载PDF
Correlation of PDCD5 and Apoptosis in Hair Cells and Spiral Ganglion Neurons of Different Age of C57BL/6J Mice 被引量:3
9
作者 王燕 褚汉启 +6 位作者 周良强 高贺云 熊浩 陈请国 陈金 黄孝文 崔永华 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2012年第1期113-118,共6页
This study examined the expression pattern of programmed cell death 5 (PDCD5) in co-chlear hair cells and spiral ganglion neurons (SGNs) and its association with age-related hearing loss in mice.Sixty C57BL/6J (C57) m... This study examined the expression pattern of programmed cell death 5 (PDCD5) in co-chlear hair cells and spiral ganglion neurons (SGNs) and its association with age-related hearing loss in mice.Sixty C57BL/6J (C57) mice at different ages were divided into four groups (3,6,9 or 12 months).PDCD5 expression was detected by using immunohistochemistry,real-time PCR and Western blot.Morphological change of the cochleae was also evaluated by using immunoassay.The results showed that the expression of PDCD5 had a gradual increase with ageing in both protein and RNA levels in C57 mice,as well as gradually increased apoptosis of cochlear hair cells and SGNs.In addition,we also found that caspase-3 activity was enhanced and its expression was enhanced with ageing.It is implied that overexpression of PDCD5 causes the increase in caspase-3 activity and the subsequent increase of apoptosis in cochlear hair cells and SGNs,and thereby plays a role in the pathogenesis of presbycusis.Thus,PDCD5 may be a new target site for the treatment and prevention of age-related hearing loss. 展开更多
关键词 AGE-RELATED HEARING loss APOPTOSIS programmed cell death hair cells spiral GANGLION neurons
下载PDF
Macular Perfusion Changes and Ganglion Cell Complex Loss in Patients with Silicone Oil-related Visual Loss 被引量:8
10
作者 MA Ya ZHU Xiao Qing PENG Xiao Yan 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2020年第3期151-157,共7页
Objective The aim of this study was to investigate macular perfusion changes and ganglion cell complex(GCC)loss in patients with unexplained visual loss following vitrectomy and silicone oil(SO)tamponade,and to evalua... Objective The aim of this study was to investigate macular perfusion changes and ganglion cell complex(GCC)loss in patients with unexplained visual loss following vitrectomy and silicone oil(SO)tamponade,and to evaluate the correlation between retinal blood flow and GCC loss using optical coherence tomography angiography(OCTA)and optical coherence tomography(OCT).Methods This retrospective study included seven eyes(seven patients)with unexpected visual loss after vitrectomy and SO tamponade.OCTA was used to evaluate the alterations in retinal vessel density(VD)in the superficial capillary plexus(SCP),deep capillary plexus(DCP),and radial peripapillary capillary plexus(RPCP).OCT was used to measure the thickness of GCC and retinal nerve fiber layer(RNFL).Medical records of patients were reviewed.Results Quantitative analysis of OCTA images revealed a significant reduction in SCP VD in the affected eyes compared with the controls(all sections P<0.05).No difference was found in GCC thickness,but FLV(focal loss volume)and GLV(global loss volume)were significantly higher in the affected eyes(both P<0.001).SCP VD was inversely correlated with FLV and GLV.Conclusions Silicone oil-related severe visual loss was associated with superficial retinal microvasculature damage and ganglion cell apoptosis. 展开更多
关键词 SILICONE oil Visual loss Optical coherence tomography ANGIOGRAPHY GANGLION cell complex
下载PDF
Modulation of copper transporters in protection against cisplatin-induced cochlear hair cell damage 被引量:10
11
作者 Richard Salvi 《Journal of Otology》 2011年第2期51-59,共9页
Cisplatin belongs to platinum-based drugs and is widely used in cancer chemotherapy.Ototoxicity is one of the major dose limiting side-effects of cisplatin.For toxicity to occur cisplatin must first be transported fro... Cisplatin belongs to platinum-based drugs and is widely used in cancer chemotherapy.Ototoxicity is one of the major dose limiting side-effects of cisplatin.For toxicity to occur cisplatin must first be transported from the bloodstream into cochlear cells.Three copper transporters are considered pathways for regulating the uptake and translocation of cisplatin into cells:Ctr1,ATP7A and ATP7B.Our recent study with cochlear organotypic cultures shows that cochlear hair cells can be destroyed by cisplatin at low concentrations from 10μm to 100μn.However,high doses of cisplatin cannot damage hair cells,maybe due to intrinsic feedback reactions that increase export of platinum by ATP7B when the platinum concentration is high in extracellular space.Cimitidine is a specific copper transporter inhibitor that can block the entrance of copper and platinum,and may prevent cisplatin-induced cochlear hair cell injury.To evaluate this hypothesis,we treated cochlear organotypic cultures with cisplatin (10 μm or 50 μm) alone,or cisplatin combined with cimitidine at concentrations ranging from 10-2000 μm for 48 hours.cisplatin at 10 μm damaged about 20% hair cells.In contrast,when cimitidine (10 μm,100 μm and 2000 μm) was added to the culture,near 100% cochlear hair cell survived.At higher concentration (50 μm),cisplatin destroyed about 80% of cochlear hair cells.However,100 μmcimitidine rescued about 50% hair cells from cisplatin damage,and 2000μm cimitidine protected about 80% hair cells.The data of western blot showed that CTR1 and ATP7B expressions were increased in cisplatin treated cochlear tissue,but cimitidine significantly reduced CTR1 and ATP7B.In addition,ATP7A expression was depressed a little after cisplatin treatment.Considering that Ctr1 is involved in copper and platinum influx,but the ATP7A and ATP7B are copper export transporters,the results suggest that cimitidine can effectively block the entrance by copper transporters and stop the influx of cisplatin. 展开更多
关键词 CISPLATIN copper transporter OTOTOXICITY cochlear hair cell
下载PDF
Hair follicle stem cells: In vitro and in vivo neural differentiation 被引量:3
12
作者 Nowruz Najafzadeh Banafshe Esmaeilzade Maryam Dastan Imcheh 《World Journal of Stem Cells》 SCIE CAS 2015年第5期866-872,共7页
Hair follicle stem cells(HFSCs) normally give rise to keratinocytes, sebocytes, and transient amplifying progenitor cells. Along with the capacity to proliferate rapidly, HFSCs provide the basis for establishing a put... Hair follicle stem cells(HFSCs) normally give rise to keratinocytes, sebocytes, and transient amplifying progenitor cells. Along with the capacity to proliferate rapidly, HFSCs provide the basis for establishing a putative source of stem cells for cell therapy. HFSCs are multipotent stem cells originating from the bulge area. The importance of these cells arises from two important characteristics, distinguishing them from all other adult stem cells. First, they are accessible and proliferate for long periods. Second, they are multipotent, possessing the ability to differentiate into mesodermal and ectodermal cell types. In addition to a developmental capacity in vitro, HFSCs display an ability to form differentiated cells in vivo. During the last two decades, numerous studies have led to the development of an appropriate culture condition for producing various cell lineages from HFSCs. Therefore, these stem cells are considered as a novel source for cell therapy of a broad spectrum of neurodegenerative disorders. This review presents the current status of human, rat, and mouse HFSCs from both the cellular and molecular biology and cell therapy perspectives. The first section of this review highlights the importance of HFSCs and in vitro differentiation, while the final section emphasizes the significance of cell differentiation in vivo. 展开更多
关键词 hair follicle STEM cellS BULGE area NEURON DIFFERENTIATION
下载PDF
Apoptosis in inner ear sensory hair cells 被引量:3
13
作者 Seth Morrill David Z.Z. He 《Journal of Otology》 CSCD 2017年第4期151-164,共14页
Apoptosis, or controlled cell death, is a normal part of cellular lifespan. Cell death of cochlear hair cells causes deafness; an apoptotic process that is not well understood. Worldwide, 1.3 billion humans suffer som... Apoptosis, or controlled cell death, is a normal part of cellular lifespan. Cell death of cochlear hair cells causes deafness; an apoptotic process that is not well understood. Worldwide, 1.3 billion humans suffer some form of hearing loss, while 360 million suffer debilitating hearing loss as a direct result of the absence of these cochlear hair cells(Worldwide Hearing, 2014). Much is known about apoptosis in other systems and in other cell types thanks to studies done since the mid-20 th century. Here we review current literature on apoptosis in general, and causes of deafness and cochlear hair cells loss as a result of apoptosis. The family of B-cell lymphoma(Bcl) proteins are among the most studied and characterized. We will review current literature on the Bcl2 and Bcl6 protein interactions in relation to apoptosis and their possible roles in vulnerability and survival of cochlear hair cells. 展开更多
关键词 APOPTOSIS hair cell BCL2 BCL6
下载PDF
Human hair follicle-derived mesenchymal stem cells:Isolation,expansion,and differentiation 被引量:8
14
作者 Bo Wang Xiao-Mei Liu +6 位作者 Zi-Nan Liu Yuan Wang Xing Han Ao-Bo Lian Ying Mu Ming-Hua Jin Jin-Yu Liu 《World Journal of Stem Cells》 SCIE CAS 2020年第6期462-470,共9页
Hair follicles are easily accessible skin appendages that protect against cold and potential injuries.Hair follicles contain various pools of stem cells,such as epithelial,melanocyte,and mesenchymal stem cells(MSCs)th... Hair follicles are easily accessible skin appendages that protect against cold and potential injuries.Hair follicles contain various pools of stem cells,such as epithelial,melanocyte,and mesenchymal stem cells(MSCs)that continuously self-renew,differentiate,regulate hair growth,and maintain skin homeostasis.Recently,MSCs derived from the dermal papilla or dermal sheath of the human hair follicle have received attention because of their accessibility and broad differentiation potential.In this review,we describe the applications of human hair follicle-derived MSCs(hHF-MSCs)in tissue engineering and regenerative medicine.We have described protocols for isolating hHF-MSCs from human hair follicles and their culture condition in detail.We also summarize strategies for maintaining hHF-MSCs in a highly proliferative but undifferentiated state after repeated in vitro passages,including supplementation of growth factors,3D suspension culture technology,and 3D aggregates of MSCs.In addition,we report the potential of hHF-MSCs in obtaining induced smooth muscle cells and tissue-engineered blood vessels,regenerated hair follicles,induced red blood cells,and induced pluripotent stem cells.In summary,the abundance,convenient accessibility,and broad differentiation potential make hHF-MSCs an ideal seed cell source of regenerative medical and cell therapy. 展开更多
关键词 Human hair follicle Regenerative therapy Mesenchymal stem cell Tissue engineering cell differentiation
下载PDF
NANOG Alleviates the Damage of Human Hair Follicle Mesenchymal Stem Cells Caused by H_2O_2 through Activation of AKT Pathway 被引量:2
15
作者 SHI Jia Hong ZUO Kui Yang +4 位作者 ZHANG Ying Yao WANG Bo HAN Xing LIAN Ao Bo LIU Jin Yu 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2019年第4期272-280,共9页
Objective To explore the protective effect of NANOG against hydrogen peroxide(H_2O_2)-induced cell damage in the human hair follicle mesenchymal stem cells(hHF-MSCs). Methods NANOG was expressed from a lentiviral vect... Objective To explore the protective effect of NANOG against hydrogen peroxide(H_2O_2)-induced cell damage in the human hair follicle mesenchymal stem cells(hHF-MSCs). Methods NANOG was expressed from a lentiviral vector, pLVX-IRES-ZsGreen. NANOG hHF-MSCs and vector hHF-MSCs were treated with 400 μmol/L hydrogen peroxide(H_2O_2) for 2 h, the cell survival rate, cell morphology, ROS production, apoptosis and expression of AKT, ERK, and p21 were determined and compared. Results Our results showed that NANOG could activate AKT and upregulate the expression of p-AKT, but not p-ERK. When treated with 400 μmol/L H_2O_2, NANOG hHF-MSCs showed higher cell survival rate, lower ROS production and apoptosis, higher expression of p-AKT, higher ratio of p-AKT/AKT. Conclusion Our results suggest that NANOG could protect hHF-MSCs against cell damage caused by H_2O_2 through activating AKT signaling pathway. 展开更多
关键词 NANOG HOMEOBOX protein hair FOLLICLES MESENCHYMAL stem cells Hydrogen PEROXIDE AKT
下载PDF
Distribution of Prestin on Outer Hair Cell Basolateral Surface 被引量:3
16
作者 YU Ning1,2, ZHAI Suo-qiang1, YANG Shi-ming1, HAN Dong-yi1, ZHAO Hong-bo2, 1 Department of Otolaryngology & Institute of Otolaryngology, CPLA General Hospital, BJ, 100853 2 Department of Surgery-Otolaryngology, University of Kentucky Medical Center, Lexington, KY 40536-0293 《Journal of Otology》 2008年第2期92-97,共6页
Prestin has been identified as a motor protein responsible for outer hair cell (OHC) electromotility and is expressed on the OHC surface. Previous studies revealed that OHC electromotility and its associated nonlinear... Prestin has been identified as a motor protein responsible for outer hair cell (OHC) electromotility and is expressed on the OHC surface. Previous studies revealed that OHC electromotility and its associated nonlinear capacitance were mainly located at the OHC lateral wall and absent at the apical cuticular plate and the basal nucleus region. Immunofluorescent staining for prestin also failed to demonstrate prestin expression at the OHC basal ends in whole-mount preparation of the organ of Corti. However, there lacks a definitive demonstration of the pattern of prestin distribution. The OHC lateral wall has a trilaminate organization and is composed of the plasma membrane, cortical lattice, and subsurface cisternae. In this study, the location of prestin proteins in dissociated OHCs was examined using immunofluorescent staining and confocal microscopy. We found that prestin was uniformly expressed on the basolateral surface, including the basal pole. No staining was seen on the cuticular plate and stereocilia. When co-stained with a membrane marker di-8-ANEPPS, prestin-labeling was found to be in the outer layer of the OHC lateral wall. After separating the plasma membrane from the underlying subsurface cisternae using a hypotonic extracellular solution, prestin-labeling was found to be in the plasma membrane, not the subsurface cisternae. The data show that prestin is expressed in the plasma membrane on the entire OHC basolateral surface. 展开更多
关键词 plasma mebrane outer hair cell electromotility COCHLEA active mechanics di-8-ANEPPS
下载PDF
Mammalin cochlear supporting cells transdifferentiation into outer hair cells 被引量:1
17
作者 刘思伟 张少强 +3 位作者 朱宏亮 李白牙 郑庆印 李胜利 《Journal of Pharmaceutical Analysis》 SCIE CAS 2008年第4期256-261,281,共7页
Objective To study the recovery of the outer hair cells in the bat cochlea after gentamicin exposure. Methods Bats were injected with a daily dose of gentamicin for 15 consecutive days and bromodeoxyuridine (BrdU) was... Objective To study the recovery of the outer hair cells in the bat cochlea after gentamicin exposure. Methods Bats were injected with a daily dose of gentamicin for 15 consecutive days and bromodeoxyuridine (BrdU) was given from day 16 to day 40 of this recovery phase. Hearing was assessed by overt acoustic behavior and auditory brainstem responses analysis, which was performed one day prior to the first injection and a day after the last injection (day 16). On day 40 animals were sacrificed for detection of cells that could take up BrdU. Results After 15 days of gentamicin treatment, all of the animals were proved to be deafened with significant increases of ABR thresholds, compared with control group. The findings in immunocytochemical stained samples and scanning electron microscopy revealed that BrdU labeled nuclei were observed in the cochlea in all of the deafened animals most commonly in the regions of the first-row and second-row Deiter's cells (DCs) and occasionally in the regions of the third-row DCs. Conclusion We suggest that, under sufficient drug and enough time, the bat cochlear supporting cells can directly transdifferentiate into the outer hair cells after aminoglycoside exposure. This transdifferentation process is essential for repair of outer hair cells and recovery of normal function after gentamicin exposure. 展开更多
关键词 regeneration bat animal model gentamcin recovery outer hair cell bromodeoxyuridine (BrdU)
下载PDF
Acetylcholine-induced calcium oscillation in isolated outer hair cells in guinea pig 被引量:1
18
作者 XIE Ding-hua1*, XIAO Zi-an1, YANG Shu1 1. Department of Otolaryngology/Head and Neck Surgery, Institute of Otology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China 《Journal of Otology》 2006年第2期99-102,共4页
Objective This study is to explore the relationship between acetylcholine(ACh)-induced calcium release from intracellular Ca2+ stores and function of outer hair cell(OHC) motors, in an attempt to elucidate the mechani... Objective This study is to explore the relationship between acetylcholine(ACh)-induced calcium release from intracellular Ca2+ stores and function of outer hair cell(OHC) motors, in an attempt to elucidate the mechanism of OHC electromotility at resting state. Methods OHCs were isolated from adult guinea pig (200-300 g) cochlea and loaded with Fluo-3/AM. The cells were treated with ACh/dHBSS, ACh/HBSS, dHBSS only or HBSS only. Intracellular [Ca2+]i variations in cells under the four treatments were observed using an Ar-Kr laser scan confocal microscope. Results [Ca2+]i oscillations were recorded in five OHCs treated with ACh/dHBSS but not in other cells. This is the first time that Ach-excited [Ca2+]i oscillations are reported in guinea pig OHCs independent of extracellular calcium. Conclusions ACh-excited [Ca2+]i oscillations in OHCs originates from intracellular calcium release and may play a crucial role in maintaining active mechanical motility of the OHC at resting and modulating OHC electromotility. 展开更多
关键词 calcium oscillation outer hair cell guinea pig acetylcholine.
下载PDF
Adipose Derived Stem Cells and Growth Factors Applied on Hair Transplantation. Follow-Up of Clinical Outcome 被引量:2
19
作者 Federica Zanzottera Emilio Lavezzari +2 位作者 Letizia Trovato Alessandro Icardi Antonio Graziano 《Journal of Cosmetics, Dermatological Sciences and Applications》 2014年第4期268-274,共7页
Different studies show the need of immature adipose cell to induce the proliferation of bulge stem cells in order to kick off the anagen phase of hair cycle. Furthermore, the adipose derived stem cell, adipose progeni... Different studies show the need of immature adipose cell to induce the proliferation of bulge stem cells in order to kick off the anagen phase of hair cycle. Furthermore, the adipose derived stem cell, adipose progenitors, and growth factors secreted by mature adipocytes can help the wound healing and the vascular neogenesis. Nowadays, it is not known any protocol of tissue regeneration applied to hair transplantation, especially if aimed to the reconstruction of the main vascular network for the engraftment of transplanted hair and the healing process. The aim of the work is to investigate how the application of autologous cellular suspension obtained by Rigenera system, mechanical fragmentation procedure which allows to obtain a physiological saline solution consisting of a heterogeneous pool of cells rich in adipose derived mesenchymalstem cells and growth factors, helps the wound healing and engraftment of the transplanted hair. During hair restoration surgery, the adipose tissue recovered from the discard of follicular slicing, was processed using the Rigenera system. The obtained cell suspension was applied in the area of hair transplantation, increasing the natural background of adipocyte lineage and raising the amount of growth factors. In addition, the cellular suspension was applied to the suture on the occipital region. The cell population was characterized by FACS. The monthly evaluation of hair transplantation follow-up with photos and the patient’s impressions demonstrates that there is a faster healing of the micro-wound and a continuous growth of the transplanted hair even two months after the procedure, with a shortening of the dormant phase. In conclusion, this new approach aims to integrate regenerative medicine and hair restoration surgery in order to improve the outcome for the patient. It would be wonderful to continue this research to elaborate on the molecular cause behind this satisfying clinical. 展开更多
关键词 STEM cell ADSC hair Transplantations REGENERATIVE MEDICINE Hypoderm hair Transplantations
下载PDF
Neurodynamics analysis of cochlear hair cell activity 被引量:1
20
作者 Weifeng Rong Rubin Wang +1 位作者 Jianhai Zhang Wanzeng Konga 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2020年第1期8-15,共8页
There have been many studies on the effect of cochlea basal membrane movement on the resolution of different frequencies and intensities.However,these studies did not take into account the influence of power and energ... There have been many studies on the effect of cochlea basal membrane movement on the resolution of different frequencies and intensities.However,these studies did not take into account the influence of power and energy consumption of the hair cells in the process of the electromotility movement,as well as the neurodynamic mechanism that produced this effect.This makes previous studies unable to fully clarify the function of outer hair cells(OHCs)and the mechanism of sound amplification.To this end,we introduce the gate conductance characteristics of the hair cells in the mechanical process of increasing frequency selectivity.The research finds that the low attenuation of OHCs membrane potential and the high gain in OHC power and energy consumption caused that OHC amplification is driven by electromotility.The research results show that the amplification of the OHCs is driven by low attenuation of membrane potential and high gain of power and energy consumption.This conclusion profoundly reveals the physiological mechanism of the electromotility movement. 展开更多
关键词 hair cells Sound frequencies Membrane potential POWER Outer hair cell amplification
下载PDF
上一页 1 2 106 下一页 到第
使用帮助 返回顶部