期刊文献+
共找到41篇文章
< 1 2 3 >
每页显示 20 50 100
A Fixed Suppressed Rate Selection Method for Suppressed Fuzzy C-Means Clustering Algorithm 被引量:2
1
作者 Jiulun Fan Jing Li 《Applied Mathematics》 2014年第8期1275-1283,共9页
Suppressed fuzzy c-means (S-FCM) clustering algorithm with the intention of combining the higher speed of hard c-means clustering algorithm and the better classification performance of fuzzy c-means clustering algorit... Suppressed fuzzy c-means (S-FCM) clustering algorithm with the intention of combining the higher speed of hard c-means clustering algorithm and the better classification performance of fuzzy c-means clustering algorithm had been studied by many researchers and applied in many fields. In the algorithm, how to select the suppressed rate is a key step. In this paper, we give a method to select the fixed suppressed rate by the structure of the data itself. The experimental results show that the proposed method is a suitable way to select the suppressed rate in suppressed fuzzy c-means clustering algorithm. 展开更多
关键词 hard c-means clustering algorithm FUZZY c-means clustering algorithm Suppressed FUZZY c-means clustering algorithm Suppressed RATE
下载PDF
Hybrid Clustering Using Firefly Optimization and Fuzzy C-Means Algorithm
2
作者 Krishnamoorthi Murugasamy Kalamani Murugasamy 《Circuits and Systems》 2016年第9期2339-2348,共10页
Classifying the data into a meaningful group is one of the fundamental ways of understanding and learning the valuable information. High-quality clustering methods are necessary for the valuable and efficient analysis... Classifying the data into a meaningful group is one of the fundamental ways of understanding and learning the valuable information. High-quality clustering methods are necessary for the valuable and efficient analysis of the increasing data. The Firefly Algorithm (FA) is one of the bio-inspired algorithms and it is recently used to solve the clustering problems. In this paper, Hybrid F-Firefly algorithm is developed by combining the Fuzzy C-Means (FCM) with FA to improve the clustering accuracy with global optimum solution. The Hybrid F-Firefly algorithm is developed by incorporating FCM operator at the end of each iteration in FA algorithm. This proposed algorithm is designed to utilize the goodness of existing algorithm and to enhance the original FA algorithm by solving the shortcomings in the FCM algorithm like the trapping in local optima and sensitive to initial seed points. In this research work, the Hybrid F-Firefly algorithm is implemented and experimentally tested for various performance measures under six different benchmark datasets. From the experimental results, it is observed that the Hybrid F-Firefly algorithm significantly improves the intra-cluster distance when compared with the existing algorithms like K-means, FCM and FA algorithm. 展开更多
关键词 clustering OPTIMIZATION K-MEANS Fuzzy c-means Firefly algorithm F-Firefly
下载PDF
Substation clustering based on improved KFCM algorithm with adaptive optimal clustering number selection 被引量:1
3
作者 Yanhui Xu Yihao Gao +4 位作者 Yundan Cheng Yuhang Sun Xuesong Li Xianxian Pan Hao Yu 《Global Energy Interconnection》 EI CSCD 2023年第4期505-516,共12页
The premise and basis of load modeling are substation load composition inquiries and cluster analyses.However,the traditional kernel fuzzy C-means(KFCM)algorithm is limited by artificial clustering number selection an... The premise and basis of load modeling are substation load composition inquiries and cluster analyses.However,the traditional kernel fuzzy C-means(KFCM)algorithm is limited by artificial clustering number selection and its convergence to local optimal solutions.To overcome these limitations,an improved KFCM algorithm with adaptive optimal clustering number selection is proposed in this paper.This algorithm optimizes the KFCM algorithm by combining the powerful global search ability of genetic algorithm and the robust local search ability of simulated annealing algorithm.The improved KFCM algorithm adaptively determines the ideal number of clusters using the clustering evaluation index ratio.Compared with the traditional KFCM algorithm,the enhanced KFCM algorithm has robust clustering and comprehensive abilities,enabling the efficient convergence to the global optimal solution. 展开更多
关键词 Load substation clustering Simulated annealing genetic algorithm Kernel fuzzy c-means algorithm clustering evaluation
下载PDF
Agent Based Segmentation of the MRI Brain Using a Robust C-Means Algorithm
4
作者 Hanane Barrah Abdeljabbar Cherkaoui Driss Sarsri 《Journal of Computer and Communications》 2016年第10期13-21,共9页
In the last decade, the MRI (Magnetic Resonance Imaging) image segmentation has become one of the most active research fields in the medical imaging domain. Because of the fuzzy nature of the MRI images, many research... In the last decade, the MRI (Magnetic Resonance Imaging) image segmentation has become one of the most active research fields in the medical imaging domain. Because of the fuzzy nature of the MRI images, many researchers have adopted the fuzzy clustering approach to segment them. In this work, a fast and robust multi-agent system (MAS) for MRI segmentation of the brain is proposed. This system gets its robustness from a robust c-means algorithm (RFCM) and obtains its fastness from the beneficial properties of agents, such as autonomy, social ability and reactivity. To show the efficiency of the proposed method, we test it on a normal brain brought from the BrainWeb Simulated Brain Database. The experimental results are valuable in both robustness to noise and running times standpoints. 展开更多
关键词 Agents and MAS MR Images Fuzzy clustering c-means algorithm Image Segmentation
下载PDF
CONSIDERING NEIGHBORHOOD INFORMATION IN IMAGE FUZZY CLUSTERING 被引量:2
5
作者 Huang Ning Zhu Minhui Zhang Shourong(The Nat. Key Lab of Microwave Imaging Tech, Inst. of Electronics, CAS, Beijing 100080) 《Journal of Electronics(China)》 2002年第3期307-310,共4页
Fuzzy C-means clustering algorithm is a classical non-supervised classification method.For image classification, fuzzy C-means clustering algorithm makes decisions on a pixel-by-pixel basis and does not take advantage... Fuzzy C-means clustering algorithm is a classical non-supervised classification method.For image classification, fuzzy C-means clustering algorithm makes decisions on a pixel-by-pixel basis and does not take advantage of spatial information, regardless of the pixels' correlation. In this letter, a novel fuzzy C-means clustering algorithm is introduced, which is based on image's neighborhood system. During classification procedure, the novel algorithm regards all pixels'fuzzy membership as a random field. The neighboring pixels' fuzzy membership information is used for the algorithm's iteration procedure. As a result, the algorithm gives a more smooth classification result and cuts down the computation time. 展开更多
关键词 Remote sensing clustering Fuzzy c-means clustering algorithm
下载PDF
Clustering: from Clusters to Knowledge
6
作者 Peter Grabusts 《Computer Technology and Application》 2013年第6期284-290,共7页
Data analysis and automatic processing is often interpreted as knowledge acquisition. In many cases it is necessary to somehow classify data or find regularities in them. Results obtained in the search of regularities... Data analysis and automatic processing is often interpreted as knowledge acquisition. In many cases it is necessary to somehow classify data or find regularities in them. Results obtained in the search of regularities in intelligent data analyzing applications are mostly represented with the help of IF-THEN rules. With the help of these rules the following tasks are solved: prediction, classification, pattern recognition and others. Using different approaches---clustering algorithms, neural network methods, fuzzy rule processing methods--we can extract rules that in an understandable language characterize the data. This allows interpreting the data, finding relationships in the data and extracting new rules that characterize them. Knowledge acquisition in this paper is defined as the process of extracting knowledge from numerical data in the form of rules. Extraction of rules in this context is based on clustering methods K-means and fuzzy C-means. With the assistance of K-means, clustering algorithm rules are derived from trained neural networks. Fuzzy C-means is used in fuzzy rule based design method. Rule extraction methodology is demonstrated in the Fisher's Iris flower data set samples. The effectiveness of the extracted rules is evaluated. Clustering and rule extraction methodology can be widely used in evaluating and analyzing various economic and financial processes. 展开更多
关键词 Data analysis clustering algorithms K-MEANS fuzzy c-means rule extraction.
下载PDF
Interactive Protein Data Clustering
7
作者 Terje Kristensen Vemund Jakobsen 《Computer Technology and Application》 2011年第10期818-827,共10页
In this paper, the authors present three different algorithms for data clustering. These are Self-Organizing Map (SOM), Neural Gas (NG) and Fuzzy C-Means (FCM) algorithms. SOM and NG algorithms are based on comp... In this paper, the authors present three different algorithms for data clustering. These are Self-Organizing Map (SOM), Neural Gas (NG) and Fuzzy C-Means (FCM) algorithms. SOM and NG algorithms are based on competitive leaming. An important property of these algorithms is that they preserve the topological structure of data. This means that data that is close in input distribution is mapped to nearby locations in the network. The FCM algorithm is an algorithm based on soft clustering which means that the different clusters are not necessarily distinct, but may overlap. This clustering method may be very useful in many biological problems, for instance in genetics, where a gene may belong to different clusters. The different algorithms are compared in terms of their visualization of the clustering of proteomic data. 展开更多
关键词 DATAMINING self-organizing map neural gas fuzzy c-means algorithm and protein clustering.
下载PDF
Induction Motor Modeling Based on a Fuzzy Clustering Multi-Model—A Real-Time Validation
8
作者 Abid Aicha Bnhamed Mouna Sbita Lassaad 《International Journal of Modern Nonlinear Theory and Application》 2015年第2期153-160,共8页
This paper discusses a comparative study of two modeling methods based on multimodel approach. The first is based on C-means clustering algorithm and the second is based on K-means clustering algorithm. The two method... This paper discusses a comparative study of two modeling methods based on multimodel approach. The first is based on C-means clustering algorithm and the second is based on K-means clustering algorithm. The two methods are experimentally applied to an induction motor. The multimodel modeling consists in representing the IM through a finite number of local models. This number of models has to be initially fixed, for which a subtractive clustering is necessary. Then both C-means and K-means clustering are exploited to determine the clusters. These clusters will be then exploited on the basis of structural and parametric identification to determine the local models that are combined, finally, to form the multimodel. The experimental study is based on MATLAB/SIMULINK environment and a DSpace scheme with DS1104 controller board. Experimental results approve that the multimodel based on K-means clustering algorithm is the most efficient. 展开更多
关键词 MULTI-MODEL Modeling c-means clustering algorithm K-Means clustering algorithm INDUCTION Motor (IM) Experimental VALIDATION
下载PDF
A weighted fuzzy C-means clustering method for hardness prediction
9
作者 Yuan Liu Shi-zhong Wei 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2023年第1期176-191,共16页
The hardness prediction model was established by support vector regression(SVR).In order to avoid exaggerating the contribution of very tiny alloying elements,a weighted fuzzy C-means(WFCM)algorithm was proposed for d... The hardness prediction model was established by support vector regression(SVR).In order to avoid exaggerating the contribution of very tiny alloying elements,a weighted fuzzy C-means(WFCM)algorithm was proposed for data clustering using improved Mahalanobis distance based on random forest importance values,which could play a full role of important features and avoid clustering center overlap.The samples were divided into two classes.The top 10 features of each class were selected to form two feature subsets for better performance of the model.The dimension and dispersion of features decreased in such feature subsets.Comparing four machine learning algorithms,SVR had the best performance and was chosen to modeling.The hyper-parameters of the SVR model were optimized by particle swarm optimization.The samples in validation set were classified according to minimum distance of sample to clustering centers,and then the SVR model trained by feature subset of corresponding class was used for prediction.Compared with the feature subset of original data set,the predicted values of model trained by feature subsets of classified samples by WFCM had higher correlation coefficient and lower root mean square error.It indicated that WFCM was an effective method to reduce the dispersion of features and improve the accuracy of model. 展开更多
关键词 hardness prediction Weighted fuzzy c-means algorithm Feature selection Particle swarm optimization Support vector regression Dispersion reduction
原文传递
A NEW UNSUPERVISED CLASSIFICATION ALGORITHM FOR POLARIMETRIC SAR IMAGES BASED ON FUZZY SET THEORY 被引量:2
10
作者 Fu Yusheng Xie Yan Pi Yiming Hou Yinming 《Journal of Electronics(China)》 2006年第4期598-601,共4页
In this letter, a new method is proposed for unsupervised classification of terrain types and man-made objects using POLarimetric Synthetic Aperture Radar (POLSAR) data. This technique is a combi-nation of the usage o... In this letter, a new method is proposed for unsupervised classification of terrain types and man-made objects using POLarimetric Synthetic Aperture Radar (POLSAR) data. This technique is a combi-nation of the usage of polarimetric information of SAR images and the unsupervised classification method based on fuzzy set theory. Image quantization and image enhancement are used to preprocess the POLSAR data. Then the polarimetric information and Fuzzy C-Means (FCM) clustering algorithm are used to classify the preprocessed images. The advantages of this algorithm are the automated classification, its high classifica-tion accuracy, fast convergence and high stability. The effectiveness of this algorithm is demonstrated by ex-periments using SIR-C/X-SAR (Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar) data. 展开更多
关键词 Radar polarimetry Synthetic Aperture Radar (SAR) Fuzzy set theory Unsupervised classification Image quantization Image enhancement Fuzzy c-means (FCM) clustering algorithm Membership function
下载PDF
Abnormal State Detection of OLTC Based on Improved Fuzzy C-means Clustering 被引量:1
11
作者 Hongwei Li Lilong Dou +3 位作者 Shuaibing Li Yongqiang Kang Xingzu Yang Haiying Dong 《Chinese Journal of Electrical Engineering》 CSCD 2023年第1期129-141,共13页
An accurate extraction of vibration signal characteristics of an on-load tap changer(OLTC)during contact switching can effectively help detect its abnormal state.Therefore,an improved fuzzy C-means clustering method f... An accurate extraction of vibration signal characteristics of an on-load tap changer(OLTC)during contact switching can effectively help detect its abnormal state.Therefore,an improved fuzzy C-means clustering method for abnormal state detection of the OLTC contact is proposed.First,the wavelet packet and singular spectrum analysis are used to denoise the vibration signal generated by the moving and static contacts of the OLTC.Then,the Hilbert-Huang transform that is optimized by the ensemble empirical mode decomposition(EEMD)is used to decompose the vibration signal and extract the boundary spectrum features.Finally,the gray wolf algorithm-based fuzzy C-means clustering is used to denoise the signal and determine the abnormal states of the OLTC contact.An analysis of the experimental data shows that the proposed secondary denoising method has a better denoising effect compared to the single denoising method.The EEMD can improve the modal aliasing effect,and the improved fuzzy C-means clustering can effectively identify the abnormal state of the OLTC contacts.The analysis results of field measured data further verify the effectiveness of the proposed method and provide a reference for the abnormal state detection of the OLTC. 展开更多
关键词 On-load tap changer singular spectrum analysis Hilbert-Huang transform gray wolf optimization algorithm fuzzy c-means clustering
原文传递
Employment Quality EvaluationModel Based on Hybrid Intelligent Algorithm
12
作者 Xianhui Gu Xiaokan Wang Shuang Liang 《Computers, Materials & Continua》 SCIE EI 2023年第1期131-139,共9页
In order to solve the defect of large error in current employment quality evaluation,an employment quality evaluation model based on grey correlation degree method and fuzzy C-means(FCM)is proposed.Firstly,it analyzes... In order to solve the defect of large error in current employment quality evaluation,an employment quality evaluation model based on grey correlation degree method and fuzzy C-means(FCM)is proposed.Firstly,it analyzes the related research work of employment quality evaluation,establishes the employment quality evaluation index system,collects the index data,and normalizes the index data;Then,the weight value of employment quality evaluation index is determined by Grey relational analysis method,and some unimportant indexes are removed;Finally,the employment quality evaluation model is established by using fuzzy cluster analysis algorithm,and compared with other employment quality evaluation models.The test results show that the employment quality evaluation accuracy of the design model exceeds 93%,the employment quality evaluation error can meet the requirements of practical application,and the employment quality evaluation effect is much better than the comparison model.The comparison test verifies the superiority of the model. 展开更多
关键词 Employment quality fuzzy c-means clustering algorithm grey correlation analysis method evaluation model index system comparative test
下载PDF
Research of Improved Fuzzy c-means Algorithm Based on a New Metric Norm 被引量:2
13
作者 毛力 宋益春 +2 位作者 李引 杨弘 肖炜 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第1期51-55,共5页
For the question that fuzzy c-means(FCM)clustering algorithm has the disadvantages of being too sensitive to the initial cluster centers and easily trapped in local optima,this paper introduces a new metric norm in FC... For the question that fuzzy c-means(FCM)clustering algorithm has the disadvantages of being too sensitive to the initial cluster centers and easily trapped in local optima,this paper introduces a new metric norm in FCM and particle swarm optimization(PSO)clustering algorithm,and proposes a parallel optimization algorithm using an improved fuzzy c-means method combined with particle swarm optimization(AF-APSO).The experiment shows that the AF-APSO can avoid local optima,and get the best fitness and clustering performance significantly. 展开更多
关键词 fuzzy c-means(FCM) particle swarm optimization(PSO) clustering algorithm new metric norm
原文传递
Improved Kernel Possibilistic Fuzzy Clustering Algorithm Based on Invasive Weed Optimization 被引量:1
14
作者 赵小强 周金虎 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第2期164-170,共7页
Fuzzy c-means(FCM) clustering algorithm is sensitive to noise points and outlier data, and the possibilistic fuzzy c-means(PFCM) clustering algorithm overcomes the problem well, but PFCM clustering algorithm has some ... Fuzzy c-means(FCM) clustering algorithm is sensitive to noise points and outlier data, and the possibilistic fuzzy c-means(PFCM) clustering algorithm overcomes the problem well, but PFCM clustering algorithm has some problems: it is still sensitive to initial clustering centers and the clustering results are not good when the tested datasets with noise are very unequal. An improved kernel possibilistic fuzzy c-means algorithm based on invasive weed optimization(IWO-KPFCM) is proposed in this paper. This algorithm first uses invasive weed optimization(IWO) algorithm to seek the optimal solution as the initial clustering centers, and introduces kernel method to make the input data from the sample space map into the high-dimensional feature space. Then, the sample variance is introduced in the objection function to measure the compact degree of data. Finally, the improved algorithm is used to cluster data. The simulation results of the University of California-Irvine(UCI) data sets and artificial data sets show that the proposed algorithm has stronger ability to resist noise, higher cluster accuracy and faster convergence speed than the PFCM algorithm. 展开更多
关键词 data mining clustering algorithm possibilistic fuzzy c-means(PFCM) kernel possibilistic fuzzy c-means algorithm based on invasiv
原文传递
Advanced Fuzzy C-Means Algorithm Based on Local Density and Distance 被引量:1
15
作者 Shaochun PANG Yijie +1 位作者 SHAO Sen JIANG Keyuan 《Journal of Shanghai Jiaotong university(Science)》 EI 2018年第5期636-642,共7页
This paper presents an advanced fuzzy C-means(FCM) clustering algorithm to overcome the weakness of the traditional FCM algorithm, including the instability of random selecting of initial center and the limitation of ... This paper presents an advanced fuzzy C-means(FCM) clustering algorithm to overcome the weakness of the traditional FCM algorithm, including the instability of random selecting of initial center and the limitation of the data separation or the size of clusters. The advanced FCM algorithm combines the distance with density and improves the objective function so that the performance of the algorithm can be improved. The experimental results show that the proposed FCM algorithm requires fewer iterations yet provides higher accuracy than the traditional FCM algorithm. The advanced algorithm is applied to the influence of stars' box-office data, and the classification accuracy of the first class stars achieves 92.625%. 展开更多
关键词 objective function clustering center fuzzy c-means (FCM) clustering algorithm degree of member-ship
原文传递
K-means聚类算法研究综述 被引量:312
16
作者 王千 王成 +1 位作者 冯振元 叶金凤 《电子设计工程》 2012年第7期21-24,共4页
总结评述了K-means聚类算法的研究现状,指出K-means聚类算法是一个NP难优化问题,无法获得全局最优。介绍了K-means聚类算法的目标函数、算法流程,并列举了一个实例,指出了数据子集的数目K、初始聚类中心选取、相似性度量和距离矩阵为K-m... 总结评述了K-means聚类算法的研究现状,指出K-means聚类算法是一个NP难优化问题,无法获得全局最优。介绍了K-means聚类算法的目标函数、算法流程,并列举了一个实例,指出了数据子集的数目K、初始聚类中心选取、相似性度量和距离矩阵为K-means聚类算法的3个基本参数。总结了K-means聚类算法存在的问题及其改进算法,指出了K-means聚类的进一步研究方向。 展开更多
关键词 K-MEANS聚类算法 NP难优化问题 数据子集的数目K 初始聚类中心选取 相似性度量和距离矩阵
下载PDF
近似骨架导向的归约聚类算法 被引量:12
17
作者 宗瑜 李明楚 江贺 《电子与信息学报》 EI CSCD 北大核心 2009年第12期2953-2957,共5页
该文针对聚类问题上缺乏骨架研究成果的现状,分析了聚类问题的近似骨架特征,设计并实现了近似骨架导向的归约聚类算法。该算法的基本思想是:首先利用现有的启发式聚类算法得到同一聚类实例的多个局部最优解,通过对局部最优解求交得到近... 该文针对聚类问题上缺乏骨架研究成果的现状,分析了聚类问题的近似骨架特征,设计并实现了近似骨架导向的归约聚类算法。该算法的基本思想是:首先利用现有的启发式聚类算法得到同一聚类实例的多个局部最优解,通过对局部最优解求交得到近似骨架,将近似骨架固定得到规模更小的搜索空间,最后在新空间上求解。在26个仿真数据集和3个实际数据集上的实验结果表明,骨架理论对提高聚类质量、降低初始解影响及加快算法收敛速度等方面均十分有效。 展开更多
关键词 聚类问题 NP-难解 启发式算法 近似骨架
下载PDF
面向不确定数据的近似骨架启发式聚类算法 被引量:12
18
作者 金萍 宗瑜 +2 位作者 屈世超 胡燕 田园 《南京大学学报(自然科学版)》 CSCD 北大核心 2015年第1期197-205,共9页
不确定数据聚类是传统数据挖掘的扩展,面对不确定数据聚类,研究者们经常把聚类问题描述成组合优化问题,并设计启发式聚类算法进行求解.现有的启发式聚类算法,如UK-means和UK-Medoids具有容易理解和实现简单等优点,但初始解敏感问题严重... 不确定数据聚类是传统数据挖掘的扩展,面对不确定数据聚类,研究者们经常把聚类问题描述成组合优化问题,并设计启发式聚类算法进行求解.现有的启发式聚类算法,如UK-means和UK-Medoids具有容易理解和实现简单等优点,但初始解敏感问题严重影响了聚类质量.本文在近似骨架理论的基础上,提出了一种近似骨架启发式聚类算法APPGCU(Approximate backbone guided heuristic clustering algorithm for uncertain data).该算法首先对原数据集完成P次采样,在采样后的规模较小的P个数据集上分别执行UK-Medoids算法得到P个局部最优解;然后通过对P个局部最优解求交得到近似骨架,并从中提取初始簇心;最后从初始簇心开始,启发式搜索出聚类结果.在仿真和实际数据集中的实验结果表明,算法APPGCU的聚类结果明显高于实验对比的启发式聚类算法,提高了聚类质量. 展开更多
关键词 NP-难解 启发式算法 近似骨架 不确定数据聚类
下载PDF
多期断层擦痕的硬划分:一种目标函数算法 被引量:4
19
作者 单业华 林舸 +1 位作者 孙洪斌 李志安 《地学前缘》 EI CAS CSCD 2003年第1期81-87,共7页
提出一种基于硬划分的目标函数法 ,它能够识别多期断层擦痕数据。这是通过在Fry(1999)的Sigma空间里对数据内在的线性构造的识别来实现的。与其它的应力反演法不同 ,目标函数法在原理上相对完善。为了检验此方法 ,在设定的应力张量下由M... 提出一种基于硬划分的目标函数法 ,它能够识别多期断层擦痕数据。这是通过在Fry(1999)的Sigma空间里对数据内在的线性构造的识别来实现的。与其它的应力反演法不同 ,目标函数法在原理上相对完善。为了检验此方法 ,在设定的应力张量下由ManteCarlo法生成“人工”断层擦痕数据。计算结果表明 ,目标函数法能够很好地识别多期断层擦痕数据。应力估测的准确度取决于断层擦痕数据的误差和不同构造期应力张量之间的相似性。随着断层擦痕数据误差范围的加大 ,应力估测的准确度趋向降低。当断层擦痕数据存在误差时 ,越是相似的设定应力张量 ,其估计准确度也就越低。不同期构造应力的彼此相似往往与构造应力场微妙或细部的时空变化有关。在从多期断层擦痕数据里识别出相似的不同期构造应力上 ,目标函数法有所突破 ,进而有助于深入认识地质构造的形成。 展开更多
关键词 目标函数法 线性构造 应力反演法 多期断层擦痕 地质构造 构造应力
下载PDF
软硬结合的快速模糊C-均值聚类算法的研究 被引量:7
20
作者 尹海丽 王颖洁 白凤波 《计算机工程与应用》 CSCD 北大核心 2008年第22期172-174,共3页
讨论的是对模糊C-均值聚类方法的改进,在原有的模糊C-均值算法的基础上,提出一种软硬结合的快速模糊C-均值聚类算法。快速模糊C-均值聚类算法是在模糊C-均值聚类算法之前加入一层硬C-均值聚类算法。硬聚类算法能比模糊聚类算法以高得多... 讨论的是对模糊C-均值聚类方法的改进,在原有的模糊C-均值算法的基础上,提出一种软硬结合的快速模糊C-均值聚类算法。快速模糊C-均值聚类算法是在模糊C-均值聚类算法之前加入一层硬C-均值聚类算法。硬聚类算法能比模糊聚类算法以高得多的速度完成,将硬聚类中心作为模糊聚类中心的迭代初值,从而提高模糊C-均值聚类算法的收敛速度,这对于大量数据的聚类是很有意义的。用数据仿真验证了这种快速模糊C-均值聚类算法比模糊C-均值算法迭代调整过程短,收敛速度快,聚类效果好。 展开更多
关键词 模糊 C-均值算法 模糊聚类 软聚类 硬聚类
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部