期刊文献+
共找到26,220篇文章
< 1 2 250 >
每页显示 20 50 100
Runx2 regulates peripheral nerve regeneration to promote Schwann cell migration and re-myelination 被引量:1
1
作者 Rong Hu Xinpeng Dun +1 位作者 Lolita Singh Matthew C.Banton 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1575-1583,共9页
Runx2 is a major regulator of osteoblast differentiation and function;however,the role of Runx2 in peripheral nerve repair is unclea r.Here,we analyzed Runx2expression following injury and found that it was specifical... Runx2 is a major regulator of osteoblast differentiation and function;however,the role of Runx2 in peripheral nerve repair is unclea r.Here,we analyzed Runx2expression following injury and found that it was specifically up-regulated in Schwann cells.Furthermore,using Schwann cell-specific Runx2 knocko ut mice,we studied peripheral nerve development and regeneration and found that multiple steps in the regeneration process following sciatic nerve injury were Runx2-dependent.Changes observed in Runx2 knoc kout mice include increased prolife ration of Schwann cells,impaired Schwann cell migration and axonal regrowth,reduced re-myelination of axo ns,and a block in macrophage clearance in the late stage of regeneration.Taken together,our findings indicate that Runx2 is a key regulator of Schwann cell plasticity,and therefore peripheral nerve repair.Thus,our study shows that Runx2 plays a major role in Schwann cell migration,re-myelination,and peripheral nerve functional recovery following injury. 展开更多
关键词 macrophage clearance migration peripheral nerve injury regeneration re-myelination RUNX2 Schwann cells
下载PDF
MAD2L2 overexpression attenuates the effects of TNF-α-induced migration and invasion capabilities in colorectal cancer cells
2
作者 HAOTONG SUN HEYING WANG +5 位作者 YANJIE HAO XIN LI JUN LING HUAN WANG FEIMIAO WANG FANG XU 《BIOCELL》 SCIE 2024年第9期1311-1322,共12页
Background:Colorectal cancer is a major global health concern,exacerbated by tumor necrosis factor-alpha(TNF-α)and its role in inflammation,with the effects of Mitotic Arrest Deficient 2 Like 2(MAD2L2)in this context... Background:Colorectal cancer is a major global health concern,exacerbated by tumor necrosis factor-alpha(TNF-α)and its role in inflammation,with the effects of Mitotic Arrest Deficient 2 Like 2(MAD2L2)in this context still unclear.Methods:The colorectal carcinoma cell lines HCT116 and SW620 were exposed to TNF-αfor a period of 24 h to instigate an inflammatory response.Subsequent assessments were conducted to measure the expression of inflammatory cytokines,the activity within the p38 mitogen-activated protein kinase(p38 MAPK)and Phosphoinositide 3-Kinase/AKT Serine/Threonine Kinase pathway(PI3K/AKT)signaling cascades.Transcriptome sequencing and subsequent integrative analysis with the Cancer Genome Atlas(TCGA)program database revealed a significant downregulation of the key factor MAD2L2.Enhancement of MAD2L2 expression was facilitated via lentiviral vector-mediated transfection.The influence of this overexpression on TNF-α-prompted inflammation,intracellular signaling pathways,and the migratory and invasive behaviors of the colorectal cancer cells was then scrutinized.Results:TNF-αtreatment significantly increased the expression of Interleukin-1 beta(IL-1β)and Interleukin-6(IL-6),activated the MAPK p38 and PI3K/AKT signaling pathways,and enhanced cell migration and invasion.A decrease in MAD2L2 expression was observed following TNF-αtreatment.However,overexpression of MAD2L2 reversed the effects of TNF-α,reducing IL-1βand IL-6 levels,attenuating PI3K/AKT pathway activation,and inhibiting cell migration and invasion.Conclusions:Overexpression of MAD2L2 attenuates the pro-inflammatory effects of TNF-α,suggesting that MAD2L2 plays a protective role against TNF-α-induced migration and invasion of colorectal carcinoma cells.Therefore,MAD2L2 holds potential as a therapeutic target in the treatment of colorectal cancer. 展开更多
关键词 Colorectal cancer TNF-Α MAD2L2 migration INVASION
下载PDF
Absent in melanoma 2 attenuates proliferation and migration and promotes apoptosis of human colorectal cancer cells by activating P38MAPK signaling pathway
3
作者 ZHI ZHANG XIAOSONG LI +7 位作者 YING ZHANG HAO ZHU ZHENGUO QIAO YANG LU XIUWEI MI HUIHUA CAO GENHAI SHEN SONGBING HE 《Oncology Research》 SCIE 2024年第2期353-360,共8页
Colorectal cancer(CRC)stands among the top prevalent cancers worldwide and holds a prominent position as a major contributor to cancer-related mortality globally.Absent in melanoma 2(AIM2),a constituent of the interfe... Colorectal cancer(CRC)stands among the top prevalent cancers worldwide and holds a prominent position as a major contributor to cancer-related mortality globally.Absent in melanoma 2(AIM2),a constituent of the interferoninducible hematopoietic interferon-inducible nuclear antigens with 200 amino acid repeats protein family,contributes to both cancer progression and inflammasome activation.Despite this understanding,the precise biological functions and molecular mechanisms governed by AIM2 in CRC remain elusive.Consequently,this study endeavors to assess AIM2’s expression levels,explore its potential antitumor effects,elucidate associated cancer-related processes,and decipher the underlying signaling pathways in CRC.Our findings showed a reduced AIM2 expression in most CRC cell lines.Elevation of AIM2 levels suppressed CRC cell proliferation and migration,altered cell cycle by inhibiting G1/S transition,and induced cell apoptosis.Further research uncovered the participation of P38 mitogen-activated protein kinase(P38MAPK)in AIM2-mediated modulation of CRC cell apoptosis and proliferation.Altogether,our achievements distinctly underscored AIM2’s antitumor role in CRC.AIM2 overexpression inhibited proliferation and migration and induced apoptosis of CRC cells via activating P38MAPK signaling pathway,indicating AIM2 as a prospective and novel therapeutic target for CRC. 展开更多
关键词 Absent in melanoma 2 PROLIFERATION migration Apoptosis P38MAPK Colorectal cancer
下载PDF
NCAPD2 serves as a potential prognostic biomarker for lung adenocarcinoma and promotes cell proliferation,migration,invasion and cell cycle in vitro
4
作者 PEILING WU LIFANG ZHAO +5 位作者 HONGYAN ZHANG YUEYAN LOU DONGFANG CHEN SHAN XUE XUEQING LIU HANDONG JIANG 《Oncology Research》 SCIE 2024年第9期1439-1452,共14页
Objectives:The pro-oncogenic effects of NCAPD2 have been extensively studied across various tumor types;however,its precise role within the context of lung adenocarcinoma(LUAD)remains elusive.This study aims to elucid... Objectives:The pro-oncogenic effects of NCAPD2 have been extensively studied across various tumor types;however,its precise role within the context of lung adenocarcinoma(LUAD)remains elusive.This study aims to elucidate the biological functions of NCAPD2 in LUAD and unravel the underlying mechanistic pathways.Methods:Utilizing bioinformatics methodologies,we explored the differential expression of NCAPD2 between normal and tumor samples,along with its correlations with clinical-pathological characteristics,survival prognosis,and immune infiltration.Results:In the TCGA-LUAD dataset,tumor samples demonstrated significantly elevated levels of NCAPD2 expression compared to normal samples(p<0.001).Clinically,higher NCAPD2 expression was notably associated with advanced T,N,and M stages,pathologic stage,gender,smoking status,and diminished overall survival(OS).Moreover,differentially expressed genes(DEGs)associated with NCAPD2 were predominantly enriched in pathways related to cell division.Immune infiltration analysis revealed that NCAPD2 expression levels were linked to the infiltration of memory B cells,naïve CD4+T cells,activated memory CD4+T cells,and M1 macrophages.In vitro experiments demonstrated that silencing NCAPD2 suppressed LUAD cell proliferation,migration,invasion,epithelial-mesenchymal transition(EMT),and cell cycle progression.Conclusions:In summary,NCAPD2 may represent a promising prognostic biomarker and novel therapeutic target for LUAD. 展开更多
关键词 NCAPD2 LUAD Prognosis Immune infiltration cell cycle
下载PDF
Galectin 2 regulates JAK/STAT3 signaling activity to modulate oral squamous cell carcinoma proliferation and migration in vitro
5
作者 XINRU FENG LI XIAO 《BIOCELL》 SCIE 2024年第5期793-801,共9页
Background:Galectin 2(LGALS2)is a protein previously reported to serve as a mediator of disease progression in a range of cancers.The function of LGALS2 in oral squamous cell carcinoma(OSCC),however,has yet to be expl... Background:Galectin 2(LGALS2)is a protein previously reported to serve as a mediator of disease progression in a range of cancers.The function of LGALS2 in oral squamous cell carcinoma(OSCC),however,has yet to be explored,prompting the present study to address this literature gap.Methods:Overall,144 paired malignant tumor tissues and paracancerous OSCC patient samples were harvested and the LGALS2 expression levels were examined through qPCR and western immunoblotting.The LGALS2 coding sequence was introduced into the pcDNA3.0 vector,to enable the overexpression of this gene,while an LGALS2-specific shRNA and corresponding controls were also obtained.The functionality of LGALS2 as a regulator of the ability of OSCC cells to grow and undergo apoptotic death in vitro was assessed through EdU uptake and CCK-8 assays,and flow cytometer,whereas a Transwell system was used to assess migratory activity and invasivity.An agonist of the Janus Kinase 2(JAK2)/Signal Transducer and Activator of Transcription 3(STAT3)pathway was also used to assess the role of this pathway in the context of LGALS2 signaling.Results:Here,we found that lower LGALS2 protein and mRNA expression were evident in OSCC tumor tissue samples,and these expression levels were associated with clinicopathological characteristics and patient survival outcomes.Silencing LGALS2 enhanced proliferation in OSCC cells while rendering these cells better able to resist apoptosis.The opposite was instead observed after LGALS2 was overexpressed.Mechanistically,the ability of LGALS2 to suppress the progression of OSCC was related to its ability to activate the JAK/STAT3 signaling axis.Conclusion:Those results suggest a role for LGALS2 as a suppressor of OSCC progression through its ability to modulate JAK/STAT3 signaling,supporting the potential utility of LGALS2 as a target for efforts aimed at treating OSCC patients. 展开更多
关键词 LGALS2 Oral squamous cell carcinoma(OSCC) Janus Kinase 2/Signal Transducer and Activator of Transcription 3(JAK2-STAT3) PROGRESSION
下载PDF
The activation of adenosine monophosphate–activated protein kinase inhibits the migration of tongue squamous cell carcinoma cells by targeting Claudin-1 via epithelial–mesenchymal transition
6
作者 Xin-Yue Zhou Qiu-Ming Liu +7 位作者 Zhuang Li Xia-Yang Liu Qi-Wei Zhao Yu Wang Feng-Hua Wu Gang Zhao Rui Sun Xiao-Hong Guo 《Animal Models and Experimental Medicine》 CAS CSCD 2024年第5期606-616,共11页
Background:The role of Claudin-1 in tongue squamous cell carcinoma(TSCC)metastasis needs further clarification,particularly its impact on cell migration.Herein,our study aims to investigate the role of Claudin-1 in TS... Background:The role of Claudin-1 in tongue squamous cell carcinoma(TSCC)metastasis needs further clarification,particularly its impact on cell migration.Herein,our study aims to investigate the role of Claudin-1 in TSCC cell migration and its underlying mechanisms.Methods:36 TSCC tissue samples underwent immunohistochemical staining for Claudin-1.Western blotting and immunofluorescence analyses were conducted to evaluate Claudin-1 expression and distribution in TSCC cells.Claudin-1 knockdown cell lines were established using short hairpin RNA transfection.Migration effects were assessed through wound healing assays.Furthermore,the expression of EMTassociated molecules was measured via western blotting.Results:Claudin-1 expression decreased as TSCC malignancy increased.Adenosine monophosphate–activated protein kinase(AMPK)activation led to increased Claudin-1 expression and membrane translocation,inhibiting TSCC cell migration and epithelial–mesenchymal transition(EMT).Conversely,Claudin-1 knockdown reversed these inhibitory effects on migration and EMT caused by AMPK activation.Conclusions:Our results indicated that AMPK activation suppresses TSCC cell migration by targeting Claudin-1 and EMT pathways. 展开更多
关键词 AMPK CLAUDIN-1 EMT migration tongue squamous cell carcinoma
下载PDF
Estimation of cancer cell migration in biomimetic random/oriented collagen fiber microenvironments
7
作者 姚静如 李国强 +8 位作者 姚喜耀 周连杰 叶志凯 刘艳平 郑栋天 唐婷 宋克纳 陈果 刘雳宇 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期749-756,共8页
Increasing data indicate that cancer cell migration is regulated by extracellular matrixes and their surrounding biochemical microenvironment,playing a crucial role in pathological processes such as tumor invasion and... Increasing data indicate that cancer cell migration is regulated by extracellular matrixes and their surrounding biochemical microenvironment,playing a crucial role in pathological processes such as tumor invasion and metastasis.However,conventional two-dimensional cell culture and animal models have limitations in studying the influence of tumor microenvironment on cancer cell migration.Fortunately,the further development of microfluidic technology has provided solutions for the study of such questions.We utilize microfluidic chip to build a random collagen fiber microenvironment(RFM)model and an oriented collagen fiber microenvironment(OFM)model that resemble early stage and late stage breast cancer microenvironments,respectively.By combining cell culture,biochemical concentration gradient construction,and microscopic imaging techniques,we investigate the impact of different collagen fiber biochemical microenvironments on the migration of breast cancer MDA-MB-231-RFP cells.The results show that MDA-MB-231-RFP cells migrate further in the OFM model compared to the RFM model,with significant differences observed.Furthermore,we establish concentration gradients of the anticancer drug paclitaxel in both the RFM and OFM models and find that paclitaxel significantly inhibits the migration of MDA-MB-231-RFP cells in the RFM model,with stronger inhibition on the high concentration side compared to the low concentration side.However,the inhibitory effect of paclitaxel on the migration of MDA-MB-231-RFP cells in the OFM model is weak.These findings suggest that the oriented collagen fiber microenvironment resembling the late-stage tumor microenvironment is more favorable for cancer cell migration and that the effectiveness of anticancer drugs is diminished.The RFM and OFM models constructed in this study not only provide a platform for studying the mechanism of cancer development,but also serve as a tool for the initial measurement of drug screening. 展开更多
关键词 microfluidic chip random collagen fiber microenvironment(RFM) oriented collagen fiber microenvironment(OFM) cancer cell migration
原文传递
IL-17 induces NSCLC cell migration and invasion by elevating MMP19 gene transcription and expression through the interaction of p300-dependent STAT3-K631 acetylation and its Y705-phosphorylation
8
作者 WEN GE YA LI +7 位作者 YUTING RUAN NINGXIA WU PEI MA TONGPENG XU YONGQIAN SHU YINGWEI WANG WEN QIU CHENHUI ZHAO 《Oncology Research》 SCIE 2024年第4期625-641,共17页
The cancer cell metastasis is a major death reason for patients with non-small cell lung cancer(NSCLC).Although researchers have disclosed that interleukin 17(IL-17)can increase matrix metalloproteinases(MMPs)inductio... The cancer cell metastasis is a major death reason for patients with non-small cell lung cancer(NSCLC).Although researchers have disclosed that interleukin 17(IL-17)can increase matrix metalloproteinases(MMPs)induction causing NSCLC cell metastasis,the underlying mechanism remains unclear.In the study,we found that IL-17 receptor A(IL-17RA),p300,p-STAT3,Ack-STAT3,and MMP19 were up-regulated both in NSCLC tissues and NSCLC cells stimulated with IL-17.p300,STAT3 and MMP19 overexpression or knockdown could raise or reduce IL-17-induced p-STAT3,Ack-STAT3 and MMP19 level as well as the cell migration and invasion.Mechanism investigation revealed that STAT3 and p300 bound to the same region(−544 to−389 nt)of MMP19 promoter,and p300 could acetylate STAT3-K631 elevating STAT3 transcriptional activity,p-STAT3 or MMP19 expression and the cell mobility exposed to IL-17.Meanwhile,p300-mediated STAT3-K631 acetylation and its Y705-phosphorylation could interact,synergistically facilitating MMP19 gene transcription and enhancing cell migration and invasion.Besides,the animal experiments exhibited that the nude mice inoculated with NSCLC cells by silencing p300,STAT3 or MMP19 gene plus IL-17 treatment,the nodule number,and MMP19,Ack-STAT3,or p-STAT3 production in the lung metastatic nodules were all alleviated.Collectively,these outcomes uncover that IL-17-triggered NSCLC metastasis involves up-regulating MMP19 expression via the interaction of STAT3-K631 acetylation by p300 and its Y705-phosphorylation,which provides a new mechanistic insight and potential strategy for NSCLC metastasis and therapy. 展开更多
关键词 NSCLC cell migration and invasion IL-17 P300 STAT3 MMP19 Acetylation and phosphorylation
下载PDF
Simulation Study on the Migration Range of CO_(2) in the Offshore Saline Aquifer
9
作者 Jiayi Wu Zhichao Sheng Jiudi Li 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第3期599-607,共9页
The geological storage of carbon dioxide(CO_(2)) is a crucial technology for mitigating climate change. Offshore deep saline aquifers have elicited increased attention due to their remarkable potential for storing CO_... The geological storage of carbon dioxide(CO_(2)) is a crucial technology for mitigating climate change. Offshore deep saline aquifers have elicited increased attention due to their remarkable potential for storing CO_(2). During long-term storage, CO_(2) migration in a deep saline aquifer needs special attention to prevent it from reaching risk points and leading to security issues. In this paper, a mechanism model is established according to the geological characteristics of saline aquifers in an offshore sedimentary basin in China. The CO_(2) migration over 100 years is simulated considering geological changes such as permeability, dip angle, thickness, and salinity. The effects of injection conditions on the CO_(2) migration range are also investigated. Results reveal that the migration range of CO_(2) in the injection period exceeds 70%, even if the postinjection period's duration is five times longer than that of the injection period. As the values of the above geological parameters increase, the migration range of CO_(2) increases, and permeability has a particularly substantial influence. Moreover, the influences of injection rate and well type are considerable. At high injection rates, CO_(2) has a greater likelihood of displacing brine in a piston-like scheme. CO_(2) injected by long horizontal wells migrates farther compared with that injected by vertical wells. In general, the plane migration range is within 3 000 m, although variations in the reservoir and injection parameters of the studied offshore saline aquifers are considered. This paper can offer references for the site selection and injection well deployment of CO_(2) saline aquifer storage. According to the studied offshore aquifers, a distance of at least 3 000 m from potential leakage points, such as spill points, active faults, and old abandoned wells, must be maintained. 展开更多
关键词 Offshore saline aquifer Carbon dioxide(CO_(2)) Geological storage migration range Geological changes
下载PDF
Long noncoding RNA Pvt1 promotes the proliferation and migration of Schwann cells by sponging microRNA-214 and targeting c-Jun following peripheral nerve injury 被引量:2
10
作者 Bin Pan Di Guo +8 位作者 Li Jing Ke Li Xin Li Gen Li Xiao Gao Zhi-Wen Li Wei Zhao Hu Feng Meng-Han Cao 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第5期1147-1153,共7页
Research has shown that long-chain noncoding RNAs(lncRNAs) are involved in the regulation of a variety of biological processes, including peripheral nerve regeneration, in part by acting as competing endogenous RNAs. ... Research has shown that long-chain noncoding RNAs(lncRNAs) are involved in the regulation of a variety of biological processes, including peripheral nerve regeneration, in part by acting as competing endogenous RNAs. c-Jun plays a key role in the repair of peripheral nerve injury. However, the precise underlying mechanism of c-Jun remains unclear. In this study, we performed microarray and bioinformatics analysis of mouse crush-injured sciatic nerves and found that the lncRNA Pvt1 was overexpressed in Schwann cells after peripheral nerve injury. Mechanistic studies revealed that Pvt1 increased c-Jun expression through sponging miRNA-214. We overexpressed Pvt1 in Schwann cells cultured in vitro and found that the proliferation and migration of Schwann cells were enhanced, and overexpression of miRNA-214 counteracted the effects of Pvt1 overexpression on Schwann cell proliferation and migration. We conducted in vivo analyses and injected Schwann cells overexpressing Pvt1 into injured sciatic nerves of mice. Schwann cells overexpressing Pvt1 enhanced the regeneration of injured sciatic nerves following peripheral nerve injury and the locomotor function of mice was improved. Our findings reveal the role of lncRNAs in the repair of peripheral nerve injury and highlight lncRNA Pvt1 as a novel potential treatment target for peripheral nerve injury. 展开更多
关键词 cell migration ceRNA C-JUN lncRNA MICROARRAY miR-214 nerve regeneration peripheral nerve injury Pvt1 Schwann cells
下载PDF
Effects of plumbagin on migration and invasion of human hepatoma cell line via JAK2/STAT3 signaling pathway
11
作者 CHENG Tao WEI Yan-fei +2 位作者 LIU Huan LIU Hong DENG Shu-ye 《Journal of Hainan Medical University》 2023年第1期33-41,共9页
Objective:To study the effect of plumbagin(PL)on the migration and invasion of human hepatocellular carcinoma(HCC)cells and its possible mechanism.Methods:The cell counting kit(CCK-8)was used to detect the effects of ... Objective:To study the effect of plumbagin(PL)on the migration and invasion of human hepatocellular carcinoma(HCC)cells and its possible mechanism.Methods:The cell counting kit(CCK-8)was used to detect the effects of different concentrations of plumbagin on the proliferation of human hepatocellular carcinoma Huh-7 and LM3 cells.The effect of plumbagin on the migration ability of Huh-7 and LM3 cells was detected by scratch test and Transwell migration test,and the effect of on the invasion ability of Huh-7 and LM3 cells was detected by Transwell invasion test.Western Blot was used to detect the expression of E-cadherin,N-cadherin,matrix metalloproteinase-2 and related proteins in JAK2/STAT3 signaling pathway in Huh-7 and LM3 cells.Results:Plumbagin could inhibit the proliferation of Huh-7 and LM3 cells in a time-and concentration-dependent manner.Plumbagin inhibited the migration and invasion of Huh-7 and LM3 cells in a concentration dependent manner,and it can down-regulate the expression of N-cadherin and MMP-2 protein,up-regulate the expression of E-cadherin protein,and inhibit the activation of JAK2/STAT3 signaling pathway.Conclusion:Plumbagin can inhibit the migration and invasion of human hepatocellular carcinoma Huh-7 and LM3 cells,and the molecular mechanism of this process may be related to the inhibition of JAK2/STAT3 signaling pathway activation. 展开更多
关键词 PLUMBAGIN Hepatic carcinoma JAK2/STAT3 signaling pathway migration INVASION
下载PDF
Evaluation of the intracellular lipid-lowering effect of polyphenols extract from highland barley in HepG2 cells 被引量:3
12
作者 Yijun Yao Zhifang Li +2 位作者 Bowen Qin Xingrong Ju Lifeng Wang 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期454-461,共8页
Active ingredients from highland barley have received considerable attention as natural products for developing treatments and dietary supplements against obesity.In practical application,the research of food combinat... Active ingredients from highland barley have received considerable attention as natural products for developing treatments and dietary supplements against obesity.In practical application,the research of food combinations is more significant than a specific food component.This study investigated the lipid-lowering effect of highland barley polyphenols via lipase assay in vitro and HepG2 cells induced by oleic acid(OA).Five indexes,triglyceride(TG),total cholesterol(T-CHO),low density lipoprotein-cholesterol(LDL-C),aspartate aminotransferase(AST),and alanine aminotransferase(ALT),were used to evaluate the lipidlowering effect of highland barley extract.We also preliminary studied the lipid-lowering mechanism by Realtime fluorescent quantitative polymerase chain reaction(q PCR).The results indicated that highland barley extract contains many components with lipid-lowering effects,such as hyperoside and scoparone.In vitro,the lipase assay showed an 18.4%lipase inhibition rate when the additive contents of highland barley extract were 100μg/m L.The intracellular lipid-lowering effect of highland barley extract was examined using 0.25 mmol/L OA-induced HepG2 cells.The results showed that intracellular TG,LDL-C,and T-CHO content decreased by 34.4%,51.2%,and 18.4%,respectively.ALT and AST decreased by 51.6%and 20.7%compared with the untreated hyperlipidemic HepG2 cells.q PCR results showed that highland barley polyphenols could up-regulation the expression of lipid metabolism-related genes such as PPARγand Fabp4. 展开更多
关键词 Highland barley Polyphenols extract Lipid-lowering effect HepG2 cells
下载PDF
The MORC2 p.S87L mutation reduces proliferation of pluripotent stem cells derived from a patient with the spinal muscular atrophy-like phenotype by inhibiting proliferation-related signaling pathways 被引量:1
13
作者 Sen Zeng Honglan Yang +8 位作者 Binghao Wang Yongzhi Xie Ke Xu Lei Liu Wanqian Cao Xionghao Liu Beisha Tang Mujun Liu Ruxu Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期205-211,共7页
Mutations in the microrchidia CW-type zinc finger protein 2(MORC2)gene are the causative agent of Charcot-Marie-Tooth disease type 2Z(CMT2Z),and the hotspot mutation p.S87L is associated with a more seve re spinal mus... Mutations in the microrchidia CW-type zinc finger protein 2(MORC2)gene are the causative agent of Charcot-Marie-Tooth disease type 2Z(CMT2Z),and the hotspot mutation p.S87L is associated with a more seve re spinal muscular atrophy-like clinical phenotype.The aims of this study were to determine the mechanism of the severe phenotype caused by the MORC2 p.S87L mutation and to explore potential treatment strategies.Epithelial cells were isolated from urine samples from a spinal muscular atrophy(SMA)-like patient[MORC2 p.S87L),a CMT2Z patient[MORC2 p.Q400R),and a healthy control and induced to generate pluripotent stem cells,which were then differentiated into motor neuron precursor cells.Next-generation RNA sequencing followed by KEGG pathway enrichment analysis revealed that differentially expressed genes involved in the PI3K/Akt and MAP K/ERK signaling pathways were enriched in the p.S87L SMA-like patient group and were significantly downregulated in induced pluripotent stem cells.Reduced proliferation was observed in the induced pluripotent stem cells and motor neuron precursor cells derived from the p.S87L SMA-like patient group compared with the CMT2Z patient group and the healthy control.G0/G1 phase cell cycle arrest was observed in induced pluripotent stem cells derived from the p.S87L SMA-like patient.MORC2 p.S87Lspecific antisense oligonucleotides(p.S87L-ASO-targeting)showed significant efficacy in improving cell prolife ration and activating the PI3K/Akt and MAP K/ERK pathways in induced pluripotent stem cells.Howeve r,p.S87L-ASO-ta rgeting did not rescue prolife ration of motor neuron precursor cells.These findings suggest that downregulation of the PI3K/Akt and MAP K/ERK signaling pathways leading to reduced cell proliferation and G0/G1 phase cell cycle arrest in induced pluripotent stem cells might be the underlying mechanism of the severe p.S87L SMA-like phenotype.p.S87L-ASO-targeting treatment can alleviate disordered cell proliferation in the early stage of pluripotent stem cell induction. 展开更多
关键词 antisense oligonucleotides cell cycle arrest Charcot-Marie-Tooth disease 2Z induced pluripotent stem cells MAPK/ERK PI3K/Akt PROLIFERATION spinal muscular atrophy-like
下载PDF
Boosting oxygen reduction activity and CO_(2) resistance on bismuth ferrite-based perovskite cathode for low-temperature solid oxide fuel cells below 600℃ 被引量:1
14
作者 Juntao Gao Zhiyun Wei +5 位作者 Mengke Yuan Zhe Wang Zhe Lü Qiang Li Lingling Xu Bo Wei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期600-609,I0013,共11页
Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)... Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)FeO_(3-δ) perovskites as highly-active catalysts for LT-SOFCs.Sm doping can significantly enhance the electrocata lytic activity and chemical stability of cathode.At 600℃,Bi_(0.675)Sm_(0.025)Sr_(0.3)FeO_(3-δ)(BSSF25) cathode has been found to be the optimum composition with a polarization resistance of 0.098 Ω cm^2,which is only around 22.8% of Bi_(0.7)Sr_(0.3)FeO_(3-δ)(BSF).A full cell utilizing BSSF25 displays an exceptional output density of 790 mW cm^(-2),which can operate continuously over100 h without obvious degradation.The remarkable electrochemical performance observed can be attributed to the improved O_(2) transport kinetics,superior surface oxygen adsorption capacity,as well as O_(2)p band centers in close proximity to the Fermi level.Moreover,larger average bonding energy(ABE) and the presence of highly acidic Bi,Sm,and Fe ions restrict the adsorption of CO_(2) on the cathode surface,resulting in excellent CO_(2) resistivity.This work provides valuable guidance for systematic design of efficient and durable catalysts for LT-SOFCs. 展开更多
关键词 Low-temperature solid oxide fuel cell Perovskite cathode DFT calculations CO_(2) tolerance
下载PDF
Sciadopitysin exerts anticancer effects on HepG2 hepatocellular carcinoma cells by regulating reactive oxygen species-mediated signaling pathways
15
作者 YAN-NAN LI YUN-HONG XIU +5 位作者 YAN-JUN TANG JING-LONG CAO WEN-SHUANG HOU AN-QI WANG TIAN-ZHU LI CHENG-HAO JIN 《BIOCELL》 SCIE 2024年第7期1055-1069,共15页
Objectives:Sciadopitysin(SP)is aflavonoid in Ginkgo biloba that exhibits various pharmacological activities.This study aimed to investigate its antitumor effects and the underlying molecular mechanism of SP in hepatoce... Objectives:Sciadopitysin(SP)is aflavonoid in Ginkgo biloba that exhibits various pharmacological activities.This study aimed to investigate its antitumor effects and the underlying molecular mechanism of SP in hepatocellular carcinoma(HCC)cells.Methods:Network pharmacology was used for target prediction analysis.Cell Counting Kit-8(CCK-8)assay was used to test the cell viability.Flow cytometry was used to test the cell cycle distribution,apoptosis status,and reactive oxygen species(ROS)levels.Transwell and wound-healing assay was used to test the migration effect of SP on HepG2 cells.Western Blot assay was used to test the expression levels of proteins.Results:Network pharmacology analysis results showed that the mitogen-activated protein kinase(MAPK)and other signaling pathways are involved in the SP anti-HCC biological process.CCK-8 assay results demonstrated that SP showed an obvious killing effect on three types of HCC cells and low cytotoxic effect on normal cells.Western Blot andflow cytometry results showed that SP regulated MAPK/signal transducer and activator of transcription 3(STAT3)/nuclear factor kappa-B(NF-κB)signaling pathway to induce mitochondrion-dependent apoptosis in HepG2 cells.Additionally,SP can arrest the G0/G1 phase cell cycle via the protein kinase B(AKT)/p21/p27/cyclin-dependent kinase(CDK)/Cyclin signaling pathway.Wound healing and transwell assays showed that SP inhibited cell motility and invasion through the AKT/glycogen synthase kinase3β(GSK-3β)/vimentin/β-catenin signaling pathway.Conclusion:Thesefindings demonstrated that SP induced mitochondrion-dependent apoptosis,arrested cell cycle in the G0/G1 phase,and inhibited cell migration by regulating the ROS-mediated signaling pathway in HepG2 cells.Thus,SP could serve as a therapeutic agent for the treatment of human HCC. 展开更多
关键词 Sciadopitysin Hepatocellular carcinoma Apoptosis cell cycle cell migration
下载PDF
TATA-box-binding protein-associated factor 15 is a novel biomarker that promotes cell proliferation and migration in gastrointestinal stromal tumor 被引量:3
16
作者 Cheng-Ming Guo Li Tang +1 位作者 Xu Li Liu-Ye Huang 《World Journal of Gastroenterology》 SCIE CAS 2023年第19期2932-2949,共18页
BACKGROUND Gastrointestinal stromal tumor(GIST)is a common neoplasm with high rates of recurrence and metastasis,and its therapeutic efficacy is still not ideal.There is an unmet need to find new molecular therapeutic... BACKGROUND Gastrointestinal stromal tumor(GIST)is a common neoplasm with high rates of recurrence and metastasis,and its therapeutic efficacy is still not ideal.There is an unmet need to find new molecular therapeutic targets for GIST.TATA-boxbinding protein-associated factor 15(TAF15)contributes to the progress of various tumors,while the role and molecular mechanism of TAF15 in GIST progression are still unknown.AIM To explore new molecular therapeutic targets for GIST and understand the biological role and underlying mechanisms of TAF15 in GIST progression.METHODS Proteomic analysis was performed to explore the differentially expressed proteins in GIST.Western blotting and immunohistochemical analysis were used to verify the expression level of TAF15 in GIST tissues and cell lines.Cell counting kit-8,colony formation,wound-healing and transwell assay were executed to detect the ability of TAF15 on cell proliferation,migration and invasion.A xenograft mouse model was applied to explore the role of TAF15 in the progression of GIST.Western blotting was used to detect the phosphorylation level and total level of RAF1,MEK and ERK1/2.RESULTS A total of 1669 proteins were identified as differentially expressed proteins with 762 upregulated and 907 downregulated in GIST.TAF15 was selected for the further study because of its important role in cell proliferation and migration.TAF15 was significantly over expressed in GIST tissues and cell lines.Overexpression of TAF15 was associated with larger tumor size and higher risk stage of GIST.TAF15 knockdown significantly inhibited the cell proliferation and migration of GIST in vitro and suppressed tumor growth in vivo.Moreover,the inhibition of TAF15 expression significantly decreased the phosphorylation level of RAF1,MEK and ERK1/2 in GIST cells and xenograft tissues,while the total RAF1,MEK and ERK1/2 had no significant change.CONCLUSION TAF15 is over expressed in GIST tissues and cell lines.Overexpression of TAF15 was associated with a poor prognosis of GIST patients.TAF15 promotes cell proliferation and migration in GIST via the activation of the RAF1/MEK/ERK signaling pathway.Thus,TAF15 is expected to be a novel latent molecular biomarker or therapeutic target of GIST. 展开更多
关键词 Gastrointestinal stromal tumor Proteomics TATA-box-binding protein-associated factor 15 BIOMARKER cell proliferation cell migration
下载PDF
Reduction of the oxidative damage to H_(2)O_(2)-induced HepG2 cells via the Nrf2 signalling pathway by plant flavonoids Quercetin and Hyperoside
17
作者 Meijing Zhang Gaoshuai Zhang +10 位作者 Xiangxing Meng Xinxin Wang Jiao Xie Shaoshu Wang Biao Wang Jilite Wang Suwen Liu Qun Huang Xu Yang Jing Li Hao Wang 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第4期1864-1876,共13页
Hyperoside and quercetin are similar in molecular structures.In this study,the antioxidant regulatory targets of hyperoside and quercetin are mainly in the nuclear factor(erythroid-2-derived)-related factor 2(Nrf2)pat... Hyperoside and quercetin are similar in molecular structures.In this study,the antioxidant regulatory targets of hyperoside and quercetin are mainly in the nuclear factor(erythroid-2-derived)-related factor 2(Nrf2)pathway predicted by network pharmacology.And the antioxidant effect and mechanism of hyperoside and quercetin were measured and compared in H_(2)O_(2)-induced Hep G2 cells and Caenorhabditis elegans.The findings indicated that quercetin was more effective than hyperoside in reducing oxidative damage,which was proved by improved cell viability,decreased reactive oxygen species(ROS)production,decreased cellular apoptosis,and alleviated mitochondrial damage.In addition,quercetin was more efficient than hyperoside in enhancing the expression of Nrf2-associated m RNAs,increasing the activities of superoxide dismutase(SOD),glutathione peroxidase(GSH-Px),and catalase(CAT),and reducing the cellular malondialdehyde(MDA)content.Quercetin was superior to hyperoside in prolonging the lifespan of worms,decreasing the accumulation of lipofuscin,inhibiting ROS production,and increasing the proportion of skn-1 in the nucleus.With the Nrf2 inhibitor ML385,we verified that quercetin and hyperoside primarily protected the cells against oxidative damage via the Nrf2 signalling pathway.Furthermore,molecular docking and dynamics simulations demonstrated that the quercetin-Kelch-like ECH-associated protein 1(Keap1)complex was more stable than the hyperoside-Keap1 complex.The stable structure of the complex might hinder the binding of Nrf2 and Keap1 to release Nrf2 and facilitate its entry into the nucleus to play an antioxidant role.Overall,quercetin had a better antioxidant than hyperoside. 展开更多
关键词 HYPEROSIDE QUERCETIN HepG2 cell Oxidative damage Nrf2 signalling pathway
下载PDF
A comparative in vitro study on the effect of SGLT2 inhibitors on chemosensitivity to doxorubicin in MCF-7 breast cancer cells
18
作者 SHAHID KARIM ALANOUD NAHER ALGHANMI +5 位作者 MAHA JAMAL HUDA ALKREATHY ALAM JAMAL HIND A.ALKHATABI MOHAMMED BAZUHAIR AFTAB AHMAD 《Oncology Research》 SCIE 2024年第5期817-830,共14页
Cancer frequently develops resistance to the majority of chemotherapy treatments.This study aimed to examine the synergistic cytotoxic and antitumor effects of SGLT2 inhibitors,specifically Canagliflozin(CAN),Dapaglif... Cancer frequently develops resistance to the majority of chemotherapy treatments.This study aimed to examine the synergistic cytotoxic and antitumor effects of SGLT2 inhibitors,specifically Canagliflozin(CAN),Dapagliflozin(DAP),Empagliflozin(EMP),and Doxorubicin(DOX),using in vitro experimentation.The precise combination of CAN+DOX has been found to greatly enhance the cytotoxic effects of doxorubicin(DOX)in MCF-7 cells.Interestingly,it was shown that cancer cells exhibit an increased demand for glucose and ATP in order to support their growth.Notably,when these medications were combined with DOX,there was a considerable inhibition of glucose consumption,as well as reductions in intracellular ATP and lactate levels.Moreover,this effect was found to be dependent on the dosages of the drugs.In addition to effectively inhibiting the cell cycle,the combination of CAN+DOX induces substantial modifications in both cell cycle and apoptotic gene expression.This work represents the initial report on the beneficial impact of SGLT2 inhibitor medications,namely CAN,DAP,and EMP,on the responsiveness to the anticancer properties of DOX.The underlying molecular mechanisms potentially involve the suppression of the function of SGLT2. 展开更多
关键词 SGLT2 Cancer CYTOTOXICITY ATP cell cycle
下载PDF
Naringin ameliorates H_(2)O_(2)-induced oxidative damage in cells and prolongs the lifespan of female Drosophila melanogaster via the insulin signaling pathway
19
作者 Xiaomei Du Kexin Wang +7 位作者 Xiaoyan Sang Xiangxing Meng Jiao Xie Tianxin Wang Xiaozhi Liu Qun Huang Nan Zhang Hao Wang 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1231-1245,共15页
Naringin exists in a wide range of Chinese herbal medicine and has proven to possess several pharmacological properties.In this study,PC12,HepG2 cells,and female Drosophila melanogaster were used to investigate the an... Naringin exists in a wide range of Chinese herbal medicine and has proven to possess several pharmacological properties.In this study,PC12,HepG2 cells,and female Drosophila melanogaster were used to investigate the antioxidative and anti-aging effects of naringin and explore the underlying mechanisms.The results showed that naringin inhibited H_(2)O_(2)-induced decline in cell viability and decreased,the content of reactive oxygen species in cells.Meanwhile,naringin prolonged the lifespan of flies,enhanced the abilities of climbing and the resistance to stress,improved the activities of antioxidant enzymes,and decreased malondialdehyde content.Naringin also improved intestinal barrier dysfunction and reduced abnormal proliferation of intestinal stem cells.Moreover,naringin down-regulated the mRNA expressions of inr,chico,pi 3k,and akt-1,and up-regulated the mRNA expressions of dilp2,dilp3,dilp5,and foxo,thereby activating autophagy-related genes and increasing the number of lysosomes.Furthermore,the mutant stocks assays and computer molecular simulation results further indicated that naringin delayed aging by inhibiting the insulin signaling(IIS)pathway and activating the autophagy pathway,which was consistent with the result of network pharmacological predictions. 展开更多
关键词 Drosophila melanogaster Insulin signaling(IIS)pathway NARINGIN PC12 cell HepG2 cell
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部