-On the basis of the data of geophysics and seismic activities, the analyses of the active faults, seismic activities and the sea floor unstable factors of the Zhujiang River Mouth Basin have been made so as to study ...-On the basis of the data of geophysics and seismic activities, the analyses of the active faults, seismic activities and the sea floor unstable factors of the Zhujiang River Mouth Basin have been made so as to study the characteristics of the compressional subactive continental margin of Cathaysian system, arc littoral strongly active fracture zone, the division of seismic subzone and seismic zone of the continental margin of northern South China Sea, the potential focal area, and to analyze the regional stability. We consider that the Zhujiang River Mouth Basin belongs to a stable or a moderately stable region.展开更多
Pt-based magnetic nano catalysts are one of the most suitable cand idates for electrocatalytic materials due to their high electrochemistry activity and retrievability.Unfortunately,the inferior durability prevents th...Pt-based magnetic nano catalysts are one of the most suitable cand idates for electrocatalytic materials due to their high electrochemistry activity and retrievability.Unfortunately,the inferior durability prevents them from being scaled-up,limiting their commercial applications.Herein,an antiferromagnetic element Mn was introduced into PtCo nanostructured alloy to synthesize uniform Mn-PtCo truncated octahedral nanoparticles(TONPs)by one-pot method.Our results show that Mn can tune the blocking temperature of Mn-PtCo TONPs due to its an tiferromag netism.At low temperatures,Mn-PtCo TONPs are ferromag netic,and the coercivity in creases gradually with in creasi ng Mn contents.At room temperature,the Mn-PtCo TONPs display superparamag netic behavior,which is greatly helpful for in dustrial recycling.Mn doping can not only modify the electronic structure of PtCo TONPs but also enhanee electrocatalytic performance for methanol oxidation reaction.The maximum specific activity of Mn-PtCo-3 reaches 8.1 A`m^-2,3.6 times of commercial Pt/C(2.2 A·m^-2)and 1.4 times of PtCo TONPs(5.6 A`m^-2),respectively.The mass activity decreases by only 30%after 2,000 cycles,while it is 45%and 99%(nearly inactive)for PtCo TONPs and commercial Pt/C catalysts,respectively.展开更多
基金This study granted by the Scientific Foundation of the China Academy of Science, is one of the stage results of the subject (R850835). A symposium of the International Petroleum Geological Conference of Northern South China Sea Continental Shelf, 1987
文摘-On the basis of the data of geophysics and seismic activities, the analyses of the active faults, seismic activities and the sea floor unstable factors of the Zhujiang River Mouth Basin have been made so as to study the characteristics of the compressional subactive continental margin of Cathaysian system, arc littoral strongly active fracture zone, the division of seismic subzone and seismic zone of the continental margin of northern South China Sea, the potential focal area, and to analyze the regional stability. We consider that the Zhujiang River Mouth Basin belongs to a stable or a moderately stable region.
基金The work was supported by the National Natural Science Foundation(Nos.51625101,51431009,5180118&and 51701202)the State Key Development Program for Basic Research of China(No.2015CB921401)+3 种基金the Fundamental Research Funds for the Central University Universities of China(No.FRF-TP-16-001C2)the China Postdoctoral Science Foundation(No.2018M632792)Startup Research Fund of Zhengzhou University(No.32210815)Bejing Natural Science Foundation(No.Z180014).
文摘Pt-based magnetic nano catalysts are one of the most suitable cand idates for electrocatalytic materials due to their high electrochemistry activity and retrievability.Unfortunately,the inferior durability prevents them from being scaled-up,limiting their commercial applications.Herein,an antiferromagnetic element Mn was introduced into PtCo nanostructured alloy to synthesize uniform Mn-PtCo truncated octahedral nanoparticles(TONPs)by one-pot method.Our results show that Mn can tune the blocking temperature of Mn-PtCo TONPs due to its an tiferromag netism.At low temperatures,Mn-PtCo TONPs are ferromag netic,and the coercivity in creases gradually with in creasi ng Mn contents.At room temperature,the Mn-PtCo TONPs display superparamag netic behavior,which is greatly helpful for in dustrial recycling.Mn doping can not only modify the electronic structure of PtCo TONPs but also enhanee electrocatalytic performance for methanol oxidation reaction.The maximum specific activity of Mn-PtCo-3 reaches 8.1 A`m^-2,3.6 times of commercial Pt/C(2.2 A·m^-2)and 1.4 times of PtCo TONPs(5.6 A`m^-2),respectively.The mass activity decreases by only 30%after 2,000 cycles,while it is 45%and 99%(nearly inactive)for PtCo TONPs and commercial Pt/C catalysts,respectively.