High-resolution approaches such as multiple signal classification and estimation of signal parameters via rotational invariance techniques(ESPRIT) are currently employed widely in multibeam echo-sounder(MBES)syste...High-resolution approaches such as multiple signal classification and estimation of signal parameters via rotational invariance techniques(ESPRIT) are currently employed widely in multibeam echo-sounder(MBES)systems for sea floor bathymetry,where a uniform line array is also required.However,due to the requirements in terms of the system coverage/resolution and installation space constraints,an MBES system usually employs a receiving array with a special shape,which means that high-resolution algorithms cannot be applied directly.In addition,the short-term stationary echo signals make it difficult to estimate the covariance matrix required by the high-resolution approaches,which further increases the complexity when applying the high-resolution algorithms in the MBES systems.The ESPRIT with multiple-angle subarray beamforming is employed to reduce the requirements in terms of the signal-to-noise ratio,number of snapshots,and computational effort.The simulations show that the new processing method can provide better fine-structure resolution.Then a highresolution bottom detection(HRBD) algorithm is developed by combining the new processing method with virtual array transformation.The application of the HRBD algorithm to a U-shaped array is also discuss.The computer simulations and experimental data processing results verify the effectiveness of the proposed algorithm.展开更多
高频地波雷达海洋回波谱的Bragg峰和二次谐波峰中,均蕴含着浪高信息,因此发展出了基于Bragg峰功率(Power of Bragg Peak,PB)、二次谐波峰与Bragg功率比(Power Ratio of Second Harmonic Peak to Bragg Peak,RSB)、双频Bragg峰功率比(Pow...高频地波雷达海洋回波谱的Bragg峰和二次谐波峰中,均蕴含着浪高信息,因此发展出了基于Bragg峰功率(Power of Bragg Peak,PB)、二次谐波峰与Bragg功率比(Power Ratio of Second Harmonic Peak to Bragg Peak,RSB)、双频Bragg峰功率比(Power Ratio of Dual Frequency Bragg Peak,RDB)等浪高反演算法。然而,三种算法均无法实现不同海况、不同距离下浪高的精确反演。本文研究发现,PB算法适用于低海况,RSB算法在近距离高海况下表现良好,而RDB算法适用于远距离测量,即三种算法高性能测量区间存在强互补性。在此基础上,本文提出了一种基于多特征(PB、RSB和RDB)融合的浪高反演算法,其中采用反向传播(Back Propagation,BP)神经网络作为特征融合器。实验表明:本文算法在测量精度、波高适应范围、距离适应范围上均优于现有波高反演算法。展开更多
In high intensity focused ultrasound(HIFU)treatment,it is crucial to accurately identify denatured and normal biological tissues.In this paper,a novel method based on compressed sensing(CS)and refined composite multi-...In high intensity focused ultrasound(HIFU)treatment,it is crucial to accurately identify denatured and normal biological tissues.In this paper,a novel method based on compressed sensing(CS)and refined composite multi-scale fuzzy entropy(RCMFE)is proposed.First,CS is used to denoise the HIFU echo signals.Then the multi-scale fuzzy entropy(MFE)and RCMFE of the denoised HIFU echo signals are calculated.This study analyzed 90 cases of HIFU echo signals,including 45 cases in normal status and 45 cases in denatured status,and the results show that although both MFE and RCMFE can be used to identify denatured tissues,the intra-class distance of RCMFE on each scale factor is smaller than MFE,and the inter-class distance is larger than MFE.Compared with MFE,RCMFE can calculate the complexity of the signal more accurately and improve the stability,compactness,and separability.When RCMFE is selected as the characteristic parameter,the RCMFE difference between denatured and normal biological tissues is more evident than that of MFE,which helps doctors evaluate the treatment effect more accurately.When the scale factor is selected as 16,the best distinguishing effect can be obtained.展开更多
In measurement system by means of pulse laser, such as plasma measuring, laser ranging, the amplitude of echoed laser wave is very weak and difficult to detect by traditional analog electronic technology. A digital hi...In measurement system by means of pulse laser, such as plasma measuring, laser ranging, the amplitude of echoed laser wave is very weak and difficult to detect by traditional analog electronic technology. A digital high speed data acquisition and processing system was designed to meet the accuracy requirement. It adopted high speed AD chip and advantage FPGA chip as core unit. Experiment results have verified this system can reach to 1GHz sample rate and can catch weak echo wave effectively and the measuring accuracy is improved markedly.展开更多
To study ultrafast processes at the sub-picosecond level, novel methods based on coherent harmonic generation technologies have been proposed to generate ultrashort radiation pulses in existing ring-based light source...To study ultrafast processes at the sub-picosecond level, novel methods based on coherent harmonic generation technologies have been proposed to generate ultrashort radiation pulses in existing ring-based light sources. Using the High Energy Photon Source as an example, we numerically test the feasibility of implementing one coherent harmonic generation technology, i.e.,the echo-enabled harmonic generation(EEHG) scheme, in a diffraction-limited storage ring(DLSR). Two different EEHG element layouts are considered, and the effect of the EEHG process on the electron beam quality is also analyzed. Studies suggest that soft X-ray pulses, with pulse lengths of a few femtoseconds and peak powers of up to1 MW, can be generated by using the EEHG scheme, while causing little perturbation to the regular operation of a DLSR.展开更多
基金The National Natural Science Foundation of China under contract No.41706066the National Key R&D Program of China under contract No.2016YFC1400200the China-ASEAN Maritime Cooperation Fund
文摘High-resolution approaches such as multiple signal classification and estimation of signal parameters via rotational invariance techniques(ESPRIT) are currently employed widely in multibeam echo-sounder(MBES)systems for sea floor bathymetry,where a uniform line array is also required.However,due to the requirements in terms of the system coverage/resolution and installation space constraints,an MBES system usually employs a receiving array with a special shape,which means that high-resolution algorithms cannot be applied directly.In addition,the short-term stationary echo signals make it difficult to estimate the covariance matrix required by the high-resolution approaches,which further increases the complexity when applying the high-resolution algorithms in the MBES systems.The ESPRIT with multiple-angle subarray beamforming is employed to reduce the requirements in terms of the signal-to-noise ratio,number of snapshots,and computational effort.The simulations show that the new processing method can provide better fine-structure resolution.Then a highresolution bottom detection(HRBD) algorithm is developed by combining the new processing method with virtual array transformation.The application of the HRBD algorithm to a U-shaped array is also discuss.The computer simulations and experimental data processing results verify the effectiveness of the proposed algorithm.
文摘高频地波雷达海洋回波谱的Bragg峰和二次谐波峰中,均蕴含着浪高信息,因此发展出了基于Bragg峰功率(Power of Bragg Peak,PB)、二次谐波峰与Bragg功率比(Power Ratio of Second Harmonic Peak to Bragg Peak,RSB)、双频Bragg峰功率比(Power Ratio of Dual Frequency Bragg Peak,RDB)等浪高反演算法。然而,三种算法均无法实现不同海况、不同距离下浪高的精确反演。本文研究发现,PB算法适用于低海况,RSB算法在近距离高海况下表现良好,而RDB算法适用于远距离测量,即三种算法高性能测量区间存在强互补性。在此基础上,本文提出了一种基于多特征(PB、RSB和RDB)融合的浪高反演算法,其中采用反向传播(Back Propagation,BP)神经网络作为特征融合器。实验表明:本文算法在测量精度、波高适应范围、距离适应范围上均优于现有波高反演算法。
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11774088 and 11474090)。
文摘In high intensity focused ultrasound(HIFU)treatment,it is crucial to accurately identify denatured and normal biological tissues.In this paper,a novel method based on compressed sensing(CS)and refined composite multi-scale fuzzy entropy(RCMFE)is proposed.First,CS is used to denoise the HIFU echo signals.Then the multi-scale fuzzy entropy(MFE)and RCMFE of the denoised HIFU echo signals are calculated.This study analyzed 90 cases of HIFU echo signals,including 45 cases in normal status and 45 cases in denatured status,and the results show that although both MFE and RCMFE can be used to identify denatured tissues,the intra-class distance of RCMFE on each scale factor is smaller than MFE,and the inter-class distance is larger than MFE.Compared with MFE,RCMFE can calculate the complexity of the signal more accurately and improve the stability,compactness,and separability.When RCMFE is selected as the characteristic parameter,the RCMFE difference between denatured and normal biological tissues is more evident than that of MFE,which helps doctors evaluate the treatment effect more accurately.When the scale factor is selected as 16,the best distinguishing effect can be obtained.
文摘In measurement system by means of pulse laser, such as plasma measuring, laser ranging, the amplitude of echoed laser wave is very weak and difficult to detect by traditional analog electronic technology. A digital high speed data acquisition and processing system was designed to meet the accuracy requirement. It adopted high speed AD chip and advantage FPGA chip as core unit. Experiment results have verified this system can reach to 1GHz sample rate and can catch weak echo wave effectively and the measuring accuracy is improved markedly.
基金supported by National Natural Science Foundation of China(No.11475202,11405187)the Youth Innovation Association of Chinese Academy of SciencesKey Research Program of Frontier Sciences,CAS(No.QYZDJ-SSW-SLH001)
文摘To study ultrafast processes at the sub-picosecond level, novel methods based on coherent harmonic generation technologies have been proposed to generate ultrashort radiation pulses in existing ring-based light sources. Using the High Energy Photon Source as an example, we numerically test the feasibility of implementing one coherent harmonic generation technology, i.e.,the echo-enabled harmonic generation(EEHG) scheme, in a diffraction-limited storage ring(DLSR). Two different EEHG element layouts are considered, and the effect of the EEHG process on the electron beam quality is also analyzed. Studies suggest that soft X-ray pulses, with pulse lengths of a few femtoseconds and peak powers of up to1 MW, can be generated by using the EEHG scheme, while causing little perturbation to the regular operation of a DLSR.