Recent detailed organic geochemical and geological investigation indicate that oils of the Bamianhe oilfield, Bohai Bay Basin, East China are the mixture of less mature oils and normal oils derived from the ES4 mudsto...Recent detailed organic geochemical and geological investigation indicate that oils of the Bamianhe oilfield, Bohai Bay Basin, East China are the mixture of less mature oils and normal oils derived from the ES4 mudstones and shales with a wide range of thermal maturity from immature to middle-maturity, and most of the oils were proved to be sourced from the depocenter of the Niuzhuang Sag immediately adjacent to the Bamianhe oilfield. Two approaches to quantify the amount of immature oils mixed through quantitative biomarkers were established. One is a relatively simple way only through organic geochemical analysis while the other is to be combined with basin modeling. Selecting biomarkers as proxies is the crucial point in both of them. The results show that the less mature oils mixed in the Bamianhe oilfield is less than 10% and 18% respectively based on the two approaches, which coincide with the results of oil-source rock correlation.展开更多
It is difficult to identify the source(s) of mixed oils from multiple source rocks, and in particular the relative contribution of each source rock. Artificial mixing experiments using typical crude oils and ratios ...It is difficult to identify the source(s) of mixed oils from multiple source rocks, and in particular the relative contribution of each source rock. Artificial mixing experiments using typical crude oils and ratios of different biomarkers show that the relative contribution changes are non-linear when two oils with different concentrations of biomarkers mix with each other. This may result in an incorrect conclusion if ratios of biomarkers and a simple binary linear equation are used to calculate the contribution proportion of each end-member to the mixed oil. The changes of biomarker ratios with the mixing proportion of end-member oils in the trinal mixing model are more complex than in the binary mixing model. When four or more oils mix, the contribution proportion of each end-member oil to the mixed oil cannot be calculated using biomarker ratios and a simple formula. Artificial mixing experiments on typical oils reveal that the absolute concentrations of biomarkers in the mixed oil cause a linear change with mixing proportion of each end-member. Mathematical inferences verify such linear changes. Some of the mathematical calculation methods using the absolute concentrations or ratios of biomarkers to quantitatively determine the proportion of each end-member in the mixed oils are deduced from the results of artificial experiments and by theoretical inference. Ratio of two biomarker compounds changes as a hyperbola with the mixing proportion in the binary mixing model, as a hyperboloid in the trinal mixing model, and as a hypersurface when mixing more than three end- members. The mixing proportion of each end-member can be quantitatively determined with these mathematical models, using the absolute concentrations and the ratios of biomarkers. The mathematical calculation model is more economical, convenient, accurate and reliable than conventional artificial mixing methods.展开更多
1 Introduction Biological markers or biomarkers(Eglinton et al.,1964;Eglinton and Calvin,1967)are molecular fossils,which were derived from once living organisms through the earth history.They occur in sediments,rocks...1 Introduction Biological markers or biomarkers(Eglinton et al.,1964;Eglinton and Calvin,1967)are molecular fossils,which were derived from once living organisms through the earth history.They occur in sediments,rocks,and crude展开更多
The Saltpond Basin,situated within the South Atlantic margin of Ghana,is a significant area for petro-leum exploration but has received relatively limited research attention.Previous studies have examined source rock ...The Saltpond Basin,situated within the South Atlantic margin of Ghana,is a significant area for petro-leum exploration but has received relatively limited research attention.Previous studies have examined source rock com-position,but data on crude oil organic chemistry are lack-ing,hindering understanding of the basin’s petroleum system and evolution.To address this gap,we analyzed biomarkers and stable carbon-isotope ratios in Saltpond Basin crude oil using gas chromatography–mass spectrometry and gas chromatography–isotope ratio mass spectrometry to eluci-date organic matter source,depositional environment,and thermal maturity.Findings were compared with oils from the West African segment of the South Atlantic margin,namely the Tano Basin and the Niger Delta Basin,to iden-tify potential correlations and gain insights into regional variations.Molecular and isotopic results unveiled a sig-nificant prevalence of organic matter derived from lower marine organisms.Patterns of organic matter deposition and preservation in Saltpond oil samples suggested a suboxic marine transitional environment,contradicting conventional understanding of terrestrial dominance in such settings.Moreover,the potential for degradation processes to obscure differentiation between terrestrial and marine organic mat-ter origins underscores the complex nature of organic mat-ter dynamics in transitional marine environments.Analysis of molecular thermal maturity indices suggested Saltpond oils were expelled from source rocks exhibiting thermal maturity at the early maturity stage.Correlation analysis unveiled genetic disparities among crude oils sourced from the Saltpond Basin and those from the Tano and Niger Delta Basin,primarily due to variations in source input and depo-sitional environment conditions.Saltpond oil exhibits lower terrestrial organic input than Tano Basin’s crude oils,which also have less terrestrial input than Niger Delta Basin crude oils.Additionally,its paleodepositional environment nota-bly differs from oils in the Tano Basin(anoxic transitional marine-lacustrine settings)and the Niger Delta Basin(sub-oxic–oxic terrigenous deltaic or marine or lacustrine envi-ronments).Thermal maturity range of Saltpond oil is com-parable to oils in the Tano Basin but lower than oils in the Niger Delta Basin.Thesefindings provide valuable insights into petroleum generation history and unique organic geo-chemical characteristics within the Saltpond Basin,essen-tial for exploration,production,and environmental manage-ment efforts in the region.Furthermore,correlation studies provide evidence that distinct biological,geological,and paleoenvironmental conditions shaped various oil types in the West African segment of the South Atlantic margin.展开更多
To investigate the effect of the water soluble fraction of crude oil(WSF) on marine bivalves, the scallop C hlamys farreri was exposed to three WSF concentrations(0.18 mg/L, 0.32 mg/L, and 0.51 mg/L, respectively) in ...To investigate the effect of the water soluble fraction of crude oil(WSF) on marine bivalves, the scallop C hlamys farreri was exposed to three WSF concentrations(0.18 mg/L, 0.32 mg/L, and 0.51 mg/L, respectively) in seawater. Petroleum hydrocarbon contents in scallops and a suite of enzymes [7-Ethoxyresorufin-O-deethylase(EROD), aryl hydrocarbon hydroxylase(AHH), glutathione S-transferase(GST), and glutathione peroxidase(GPx)] in gills and digestive glands were monitored over 10 days. The results revealed that WSF affected the activity of the four enzymes in the gills and digestive glands. EROD activity in the gills was significantly induced in most individuals of the three test groups, while in the digestive gland it was significantly induced in the low-concentration group within 4 days but was inhibited in the middle- and high-concentration groups on days 1, 4, and 10. AHH activity in the gills of all treatment groups was significantly induced on day 1. In the digestive gland, AHH activity was induced in most individuals from the treatment groups. In all treatment groups, GST activity was significantly inhibited from days 2 to 10 in the gills and was induced after day 4 in the digestive gland. GPx activity in the gills was significantly inhibited throughout the exposure period in all treatment groups. There was no overall significant difference in GPx activity in the digestive gland between the control and treatment groups. Our results also revealed that petroleum hydrocarbon concentrations in the tissues increased linearly with exposure time. EROD activity in the digestive gland and GST and GPx activity in the gill tissue were negatively correlated with petroleum hydrocarbon body burden. These enzymes play important roles in detoxification and can act as potential biomarkers for monitoring petroleum hydrocarbon contaminants in the marine environment.展开更多
The Dongying Depression is an important petrolifeous province,with diverse source rocks and complex petroleum distribution patterns.A total of 32 crude oils were analyzed by the gas chromatographyemass spectrometry an...The Dongying Depression is an important petrolifeous province,with diverse source rocks and complex petroleum distribution patterns.A total of 32 crude oils were analyzed by the gas chromatographyemass spectrometry and isotopic compositions to better understanding the petroleum systems in the study area.Three oil types were classified by hierarchical cluster analyses.Type I and II oils have closely correlation with the discovered source rocks,which have been confirmed to be mainly derived from the lower third and upper forth member of the Eocene Shahejie Formation source rocks(Es3^(L) and Es4^(U)),respectively.Obviously,type III oils contain abundant gammacerane,tricyclic terpanes and C_(29) steranes and have lower values of δ13C than type I and II oils,indicating a completely different source rock and biological origins.Until recently,type III oils fail to match any of the discovered source rock,which contains main contribution of aquatic organism or/and bacteria inputs.In addition,the spacial distribution of these three oil types were discussed.Type I oils mainly distributed in the Es3 and Es4 reservoirs that closed to the generative kitchens.Type II oils occurred in the Es4 reservoirs in the sourthern slope of the depression,which probably caused by lateral migration along the horizontal fractures and sandstone layers within the Es4 interval.Differently,type III oils in the sourthern slope of the depression were mainly discovered in the Eocene Kongdian or Ordocician reservoirs,which suggests great exploration potential of deep underlying strata.展开更多
基金Results in this study were obtained as part of the China 973 National Key Research and Development Program(#G199943310)a Professional Enhancement Program of Natural Resources Canada's Earth Science Sector,under the collaborative research agreement between the Geological Survey of Canada(Calgary)and the University of Petroleum(Bejjing)+1 种基金The funding for this project was provided by the National Natural Science Foundation of China(under the“973”National Key Research and Development Program China#G1999043310)Geological Survey of Canada and Chinese National Petrochemical Corporation.
文摘Recent detailed organic geochemical and geological investigation indicate that oils of the Bamianhe oilfield, Bohai Bay Basin, East China are the mixture of less mature oils and normal oils derived from the ES4 mudstones and shales with a wide range of thermal maturity from immature to middle-maturity, and most of the oils were proved to be sourced from the depocenter of the Niuzhuang Sag immediately adjacent to the Bamianhe oilfield. Two approaches to quantify the amount of immature oils mixed through quantitative biomarkers were established. One is a relatively simple way only through organic geochemical analysis while the other is to be combined with basin modeling. Selecting biomarkers as proxies is the crucial point in both of them. The results show that the less mature oils mixed in the Bamianhe oilfield is less than 10% and 18% respectively based on the two approaches, which coincide with the results of oil-source rock correlation.
文摘It is difficult to identify the source(s) of mixed oils from multiple source rocks, and in particular the relative contribution of each source rock. Artificial mixing experiments using typical crude oils and ratios of different biomarkers show that the relative contribution changes are non-linear when two oils with different concentrations of biomarkers mix with each other. This may result in an incorrect conclusion if ratios of biomarkers and a simple binary linear equation are used to calculate the contribution proportion of each end-member to the mixed oil. The changes of biomarker ratios with the mixing proportion of end-member oils in the trinal mixing model are more complex than in the binary mixing model. When four or more oils mix, the contribution proportion of each end-member oil to the mixed oil cannot be calculated using biomarker ratios and a simple formula. Artificial mixing experiments on typical oils reveal that the absolute concentrations of biomarkers in the mixed oil cause a linear change with mixing proportion of each end-member. Mathematical inferences verify such linear changes. Some of the mathematical calculation methods using the absolute concentrations or ratios of biomarkers to quantitatively determine the proportion of each end-member in the mixed oils are deduced from the results of artificial experiments and by theoretical inference. Ratio of two biomarker compounds changes as a hyperbola with the mixing proportion in the binary mixing model, as a hyperboloid in the trinal mixing model, and as a hypersurface when mixing more than three end- members. The mixing proportion of each end-member can be quantitatively determined with these mathematical models, using the absolute concentrations and the ratios of biomarkers. The mathematical calculation model is more economical, convenient, accurate and reliable than conventional artificial mixing methods.
基金funded by the National Natural Science Foundation of China (Grant No. 41172126)
文摘1 Introduction Biological markers or biomarkers(Eglinton et al.,1964;Eglinton and Calvin,1967)are molecular fossils,which were derived from once living organisms through the earth history.They occur in sediments,rocks,and crude
文摘The Saltpond Basin,situated within the South Atlantic margin of Ghana,is a significant area for petro-leum exploration but has received relatively limited research attention.Previous studies have examined source rock com-position,but data on crude oil organic chemistry are lack-ing,hindering understanding of the basin’s petroleum system and evolution.To address this gap,we analyzed biomarkers and stable carbon-isotope ratios in Saltpond Basin crude oil using gas chromatography–mass spectrometry and gas chromatography–isotope ratio mass spectrometry to eluci-date organic matter source,depositional environment,and thermal maturity.Findings were compared with oils from the West African segment of the South Atlantic margin,namely the Tano Basin and the Niger Delta Basin,to iden-tify potential correlations and gain insights into regional variations.Molecular and isotopic results unveiled a sig-nificant prevalence of organic matter derived from lower marine organisms.Patterns of organic matter deposition and preservation in Saltpond oil samples suggested a suboxic marine transitional environment,contradicting conventional understanding of terrestrial dominance in such settings.Moreover,the potential for degradation processes to obscure differentiation between terrestrial and marine organic mat-ter origins underscores the complex nature of organic mat-ter dynamics in transitional marine environments.Analysis of molecular thermal maturity indices suggested Saltpond oils were expelled from source rocks exhibiting thermal maturity at the early maturity stage.Correlation analysis unveiled genetic disparities among crude oils sourced from the Saltpond Basin and those from the Tano and Niger Delta Basin,primarily due to variations in source input and depo-sitional environment conditions.Saltpond oil exhibits lower terrestrial organic input than Tano Basin’s crude oils,which also have less terrestrial input than Niger Delta Basin crude oils.Additionally,its paleodepositional environment nota-bly differs from oils in the Tano Basin(anoxic transitional marine-lacustrine settings)and the Niger Delta Basin(sub-oxic–oxic terrigenous deltaic or marine or lacustrine envi-ronments).Thermal maturity range of Saltpond oil is com-parable to oils in the Tano Basin but lower than oils in the Niger Delta Basin.Thesefindings provide valuable insights into petroleum generation history and unique organic geo-chemical characteristics within the Saltpond Basin,essen-tial for exploration,production,and environmental manage-ment efforts in the region.Furthermore,correlation studies provide evidence that distinct biological,geological,and paleoenvironmental conditions shaped various oil types in the West African segment of the South Atlantic margin.
基金Supported by the Taishan Scholar Programthe Marine Public Welfare Scientific Research Project of China(No.201105013)+2 种基金the Basic Scientific Fund of the First Institute of Oceanography,State Oceanic Administration,China(No.2010T04)the Natural Science Foundation of State Oceanic Administration of China(No.2012534)the China Maritime Surveillance Operational Fund
文摘To investigate the effect of the water soluble fraction of crude oil(WSF) on marine bivalves, the scallop C hlamys farreri was exposed to three WSF concentrations(0.18 mg/L, 0.32 mg/L, and 0.51 mg/L, respectively) in seawater. Petroleum hydrocarbon contents in scallops and a suite of enzymes [7-Ethoxyresorufin-O-deethylase(EROD), aryl hydrocarbon hydroxylase(AHH), glutathione S-transferase(GST), and glutathione peroxidase(GPx)] in gills and digestive glands were monitored over 10 days. The results revealed that WSF affected the activity of the four enzymes in the gills and digestive glands. EROD activity in the gills was significantly induced in most individuals of the three test groups, while in the digestive gland it was significantly induced in the low-concentration group within 4 days but was inhibited in the middle- and high-concentration groups on days 1, 4, and 10. AHH activity in the gills of all treatment groups was significantly induced on day 1. In the digestive gland, AHH activity was induced in most individuals from the treatment groups. In all treatment groups, GST activity was significantly inhibited from days 2 to 10 in the gills and was induced after day 4 in the digestive gland. GPx activity in the gills was significantly inhibited throughout the exposure period in all treatment groups. There was no overall significant difference in GPx activity in the digestive gland between the control and treatment groups. Our results also revealed that petroleum hydrocarbon concentrations in the tissues increased linearly with exposure time. EROD activity in the digestive gland and GST and GPx activity in the gill tissue were negatively correlated with petroleum hydrocarbon body burden. These enzymes play important roles in detoxification and can act as potential biomarkers for monitoring petroleum hydrocarbon contaminants in the marine environment.
基金This work was funded by National Natural Science Foundation of China(Grants Nos.41972127 and U19B6003)。
文摘The Dongying Depression is an important petrolifeous province,with diverse source rocks and complex petroleum distribution patterns.A total of 32 crude oils were analyzed by the gas chromatographyemass spectrometry and isotopic compositions to better understanding the petroleum systems in the study area.Three oil types were classified by hierarchical cluster analyses.Type I and II oils have closely correlation with the discovered source rocks,which have been confirmed to be mainly derived from the lower third and upper forth member of the Eocene Shahejie Formation source rocks(Es3^(L) and Es4^(U)),respectively.Obviously,type III oils contain abundant gammacerane,tricyclic terpanes and C_(29) steranes and have lower values of δ13C than type I and II oils,indicating a completely different source rock and biological origins.Until recently,type III oils fail to match any of the discovered source rock,which contains main contribution of aquatic organism or/and bacteria inputs.In addition,the spacial distribution of these three oil types were discussed.Type I oils mainly distributed in the Es3 and Es4 reservoirs that closed to the generative kitchens.Type II oils occurred in the Es4 reservoirs in the sourthern slope of the depression,which probably caused by lateral migration along the horizontal fractures and sandstone layers within the Es4 interval.Differently,type III oils in the sourthern slope of the depression were mainly discovered in the Eocene Kongdian or Ordocician reservoirs,which suggests great exploration potential of deep underlying strata.