The LiYF4 single crystal codoped with thulium and holmium ions was successfully grown by the Cz method. The optimal technical parameters obtained were as follows: the pulling rate was 0.16 mm/h; the rotation speed wa...The LiYF4 single crystal codoped with thulium and holmium ions was successfully grown by the Cz method. The optimal technical parameters obtained were as follows: the pulling rate was 0.16 mm/h; the rotation speed was 3 rpm; the cooling rate was 15 °C/h. The result of XRD curve showed that as-grown Tm,Ho:LiYF4 laser crystal belonged to the monoclinic system with scheelite-type structure and space group I41/a. The cell parameters calculated were: a=0.52160 nm, c=1.09841 nm and Z=4. Absorption and fluorescence spectra of Tm,Ho:LiYF4 laser crystal at room temperature were measured and analysed. The absorption cross section, FWHM and absorption coefficient at 779.3 nm calculated were 7.44×10–21 cm2, 8.7 nm and 2.23 cm–1, respectively. An intensive fluorescence emission peak appeared near 2045 nm. The emission cross section and fluorescence lifetime were 0.87×10–20 cm2 and 10.8 ms, respectively. The ratio of Tm–Ho transfer to its back-transfer process was 10.6.展开更多
基金Project supported by Changchun Science and Technology Bureau (2009110)Jilin Provincial Education Department (2009JYT15)Jilin Pro-vincial Science and Technology Department (20100556)
文摘The LiYF4 single crystal codoped with thulium and holmium ions was successfully grown by the Cz method. The optimal technical parameters obtained were as follows: the pulling rate was 0.16 mm/h; the rotation speed was 3 rpm; the cooling rate was 15 °C/h. The result of XRD curve showed that as-grown Tm,Ho:LiYF4 laser crystal belonged to the monoclinic system with scheelite-type structure and space group I41/a. The cell parameters calculated were: a=0.52160 nm, c=1.09841 nm and Z=4. Absorption and fluorescence spectra of Tm,Ho:LiYF4 laser crystal at room temperature were measured and analysed. The absorption cross section, FWHM and absorption coefficient at 779.3 nm calculated were 7.44×10–21 cm2, 8.7 nm and 2.23 cm–1, respectively. An intensive fluorescence emission peak appeared near 2045 nm. The emission cross section and fluorescence lifetime were 0.87×10–20 cm2 and 10.8 ms, respectively. The ratio of Tm–Ho transfer to its back-transfer process was 10.6.