The variational method is applied to the study of charge transfer in dry DNA by using an extended Holstein small polaron model in two cases: the site-dependent flnite-chain discrete case and the site-independent cont...The variational method is applied to the study of charge transfer in dry DNA by using an extended Holstein small polaron model in two cases: the site-dependent flnite-chain discrete case and the site-independent continuous one. The treatments in the two cases are proven to be consistent in theory and calculation. Discrete and continuous treatments of Holstein model both can yield a nonlinear equation to describe the charge migration in an actual long-range DNA chain. Our theoretical results of binding energy Eb, probability amplitude of charge carrier Ф and the relation between energy and charge-lattice coupling strength are in accordance with the available experimental results and recent theoretical calculations.展开更多
基金Project supported by the National Nature Science Foundation of China (Grant No 50272063) and the Foundation for Excellent Talents of Anhui Province, China (Grant No 2001Z016).
文摘The variational method is applied to the study of charge transfer in dry DNA by using an extended Holstein small polaron model in two cases: the site-dependent flnite-chain discrete case and the site-independent continuous one. The treatments in the two cases are proven to be consistent in theory and calculation. Discrete and continuous treatments of Holstein model both can yield a nonlinear equation to describe the charge migration in an actual long-range DNA chain. Our theoretical results of binding energy Eb, probability amplitude of charge carrier Ф and the relation between energy and charge-lattice coupling strength are in accordance with the available experimental results and recent theoretical calculations.