Hunting stability is an important performance criterion in railway vehicles.This study proposes an incorporation of a bio-inspired limb-like structure(LLS)-based nonlinear damping into the motor suspension system for ...Hunting stability is an important performance criterion in railway vehicles.This study proposes an incorporation of a bio-inspired limb-like structure(LLS)-based nonlinear damping into the motor suspension system for traction units to improve the nonlinear critical speed and hunting stability of high-speed trains(HSTs).Initially,a vibration transmission analysis is conducted on a HST vehicle and a metro vehicle that suffered from hunting motion to explore the effect of different motor suspension systems from on-track tests.Subsequently,a simplified lateral dynamics model of an HST bogie is established to investigate the influence of the motor suspension on the bogie hunting behavior.The bifurcation analysis is applied to optimize the motor suspension parameters for high critical speed.Then,the nonlinear damping of the bio-inspired LLS,which has a positive correlation with the relative displacement,can further improve the modal damping of hunting motion and nonlinear critical speed compared with the linear motor suspension system.Furthermore,a comprehensive numerical model of a high-speed train,considering all nonlinearities,is established to investigate the influence of different types of motor suspension.The simulation results are well consistent with the theoretical analysis.The benefits of employing nonlinear damping of the bio-inspired LLS into the motor suspension of HSTs to enhance bogie hunting stability are thoroughly validated.展开更多
A stochastic wheelset model with a nonlinear wheel-rail contact relationship is established to investigate the stochastic stability and stochastic bifurcation of the wheelset system with the consideration of the stoch...A stochastic wheelset model with a nonlinear wheel-rail contact relationship is established to investigate the stochastic stability and stochastic bifurcation of the wheelset system with the consideration of the stochastic parametric excitations of equivalent conicity and suspension stiffness.The wheelset is systematized into a onedimensional(1D)diffusion process by using the stochastic average method,the behavior of the singular boundary is analyzed to determine the hunting stability condition of the wheelset system,and the critical speed of stochastic bifurcation is obtained.The stationary probability density and joint probability density are derived theoretically.Based on the topological structure change of the probability density function,the stochastic Hopf bifurcation form and bifurcation condition of the wheelset system are determined.The effects of stochastic factors on the hunting stability and bifurcation characteristics are analyzed,and the simulation results verify the correctness of the theoretical analysis.The results reveal that the boundary behavior of the diffusion process determines the hunting stability of the stochastic wheelset system,and the left boundary characteristic value cL=1 is the critical state of hunting stability.Besides,stochastic D-bifurcation and P-bifurcation will appear in the wheelset system,and the critical speeds of the two kinds of stochastic bifurcation decrease with the increase in the stochastic parametric excitation intensity.展开更多
The influences of steady aerodynamic loads on hunting stability of high-speed railway vehicles were investigated in this study.A mechanism is suggested to explain the change of hunting behavior due to actions of aerod...The influences of steady aerodynamic loads on hunting stability of high-speed railway vehicles were investigated in this study.A mechanism is suggested to explain the change of hunting behavior due to actions of aerodynamic loads:the aerodynamic loads can change the position of vehicle system(consequently the contact relations),the wheel/rail normal contact forces,the gravitational restoring forces/moments and the creep forces/moments.A mathematical model for hunting stability incorporating such influences was developed.A computer program capable of incorporating the effects of aerodynamic loads based on the model was written,and the critical speeds were calculated using this program.The dependences of linear and nonlinear critical speeds on suspension parameters considering aerodynamic loads were analyzed by using the orthogonal test method,the results were also compared with the situations without aerodynamic loads.It is shown that the most dominant factors a ff ecting linear and nonlinear critical speeds are different whether the aerodynamic loads considered or not.The damping of yaw damper is the most dominant influencing factor for linear critical speeds,while the damping of lateral damper is most dominant for nonlinear ones.When the influences of aerodynamic loads are considered,the linear critical speeds decrease with the rise of cross wind velocity,whereas it is not the case for the nonlinear critical speeds.The variation trends of critical speeds with suspension parameters can be significantly changed by aerodynamic loads.Combined actions of aerodynamic loads and suspension parameters also a ff ect the critical speeds.The effects of such joint action are more obvious for nonlinear critical speeds.展开更多
This paper proposes a systematic method, integrating the uniform design (UD) of experiments and quantum-behaved particle swarm optimization (QPSO), to solve the problem of a robust design for a railway vehicle suspens...This paper proposes a systematic method, integrating the uniform design (UD) of experiments and quantum-behaved particle swarm optimization (QPSO), to solve the problem of a robust design for a railway vehicle suspension system. Based on the new nonlinear creep model derived from combining Hertz contact theory, Kalker's linear theory and a heuristic nonlinear creep model, the modeling and dynamic analysis of a 24 degree-of-freedom railway vehicle system were investigated. The Lyapunov indirect method was used to examine the effects of suspension parameters, wheel conicities and wheel rolling radii on critical hunting speeds. Generally, the critical hunting speeds of a vehicle system resulting from worn wheels with different wheel rolling radii are lower than those of a vehicle system having original wheels without different wheel rolling radii. Because of worn wheels, the critical hunting speed of a running railway vehicle substantially declines over the long term. For safety reasons, it is necessary to design the suspension system parameters to increase the robustness of the system and decrease the sensitive of wheel noises. By applying UD and QPSO, the nominal-the-best signal-to-noise ratio of the system was increased from -48.17 to -34.05 dB. The rate of improvement was 29.31%. This study has demonstrated that the integration of UD and QPSO can successfully reveal the optimal solution of suspension parameters for solving the robust design problem of a railway vehicle suspension system.展开更多
To study the vehicle hunting behavior and its coupling with car body vibrations,a simplified lateral-dynamics-intended railway vehicle model is developed.A two-truck vehicle is modeled as a 17 degrees-of-freedom rigid...To study the vehicle hunting behavior and its coupling with car body vibrations,a simplified lateral-dynamics-intended railway vehicle model is developed.A two-truck vehicle is modeled as a 17 degrees-of-freedom rigid system,into which the car body flexural vibrations of torsion and bending modes are further integrated.The wheel/rail interaction employs a real-time calculation for the Hertzian normal contact,in which the nonlinear curvatures of wheel and rail profiles are presented as functions of wheelset lateral movement and/or yaw rotation.Then the tangential/creep forces are analytically expressed as the Hertzian contact patch geometry,and lead to a continuous and fast calculation compared to a look-up table interpolation.It is shown that the hunting frequencies of the vehicle model and a truck model differ significantly,which verifies the necessity of the whole vehicle model.In the case of low wheel/rail conicity,the hunting frequency increases linearly with vehicle speed,whereas it rises slowly at high speed for a large conicity.Comparison of hunting frequency and damping ratio between various conicities shows that first hunting(car body hunting)may occur when the vehicle is operated at a low speed in a small conicity case,while a second hunting(truck hunting)appears when the vehicle is operated at a high speed in a large conicity case.Stability analysis of linear and nonlinear vehicle models was carried out through coast down method and constant speed simulations.Results tell that the linear one overestimates the lateral vibrating.Whereas the structural vibrations of car body can be ignored in the stability analysis.Compared to existing simplified models for hunting stability study,the proposed simplified vehicle model released limitations in the nonlinear geometries of wheel/rail profiles,and it is suitable for a frequency-domain analysis by deriving the analytical expressions of the normal and tangential wheel/rail contact forces.展开更多
基金the National Natural Science Foundation of China (Nos. 52388102, 52072317 and U2268210)the State Key Laboratory of Rail Transit Vehicle System (No. 2024RVL-T12)
文摘Hunting stability is an important performance criterion in railway vehicles.This study proposes an incorporation of a bio-inspired limb-like structure(LLS)-based nonlinear damping into the motor suspension system for traction units to improve the nonlinear critical speed and hunting stability of high-speed trains(HSTs).Initially,a vibration transmission analysis is conducted on a HST vehicle and a metro vehicle that suffered from hunting motion to explore the effect of different motor suspension systems from on-track tests.Subsequently,a simplified lateral dynamics model of an HST bogie is established to investigate the influence of the motor suspension on the bogie hunting behavior.The bifurcation analysis is applied to optimize the motor suspension parameters for high critical speed.Then,the nonlinear damping of the bio-inspired LLS,which has a positive correlation with the relative displacement,can further improve the modal damping of hunting motion and nonlinear critical speed compared with the linear motor suspension system.Furthermore,a comprehensive numerical model of a high-speed train,considering all nonlinearities,is established to investigate the influence of different types of motor suspension.The simulation results are well consistent with the theoretical analysis.The benefits of employing nonlinear damping of the bio-inspired LLS into the motor suspension of HSTs to enhance bogie hunting stability are thoroughly validated.
基金Project supported by the National Natural Science Foundation of China(Nos.11790282,12172235,12072208,and 52072249)the Opening Foundation of State Key Laboratory of Shijiazhuang Tiedao University of China(No.ZZ2021-13)。
文摘A stochastic wheelset model with a nonlinear wheel-rail contact relationship is established to investigate the stochastic stability and stochastic bifurcation of the wheelset system with the consideration of the stochastic parametric excitations of equivalent conicity and suspension stiffness.The wheelset is systematized into a onedimensional(1D)diffusion process by using the stochastic average method,the behavior of the singular boundary is analyzed to determine the hunting stability condition of the wheelset system,and the critical speed of stochastic bifurcation is obtained.The stationary probability density and joint probability density are derived theoretically.Based on the topological structure change of the probability density function,the stochastic Hopf bifurcation form and bifurcation condition of the wheelset system are determined.The effects of stochastic factors on the hunting stability and bifurcation characteristics are analyzed,and the simulation results verify the correctness of the theoretical analysis.The results reveal that the boundary behavior of the diffusion process determines the hunting stability of the stochastic wheelset system,and the left boundary characteristic value cL=1 is the critical state of hunting stability.Besides,stochastic D-bifurcation and P-bifurcation will appear in the wheelset system,and the critical speeds of the two kinds of stochastic bifurcation decrease with the increase in the stochastic parametric excitation intensity.
基金supported by the National Basic Research Program(973 Program)of China(2011CB711100 and 2014CB046801)the National Natural Science Foundation of China(11072246 and51490673)the Knowledge Innovation Program of Chinese Academy of Sciences(KJCX2-EW-L01)
文摘The influences of steady aerodynamic loads on hunting stability of high-speed railway vehicles were investigated in this study.A mechanism is suggested to explain the change of hunting behavior due to actions of aerodynamic loads:the aerodynamic loads can change the position of vehicle system(consequently the contact relations),the wheel/rail normal contact forces,the gravitational restoring forces/moments and the creep forces/moments.A mathematical model for hunting stability incorporating such influences was developed.A computer program capable of incorporating the effects of aerodynamic loads based on the model was written,and the critical speeds were calculated using this program.The dependences of linear and nonlinear critical speeds on suspension parameters considering aerodynamic loads were analyzed by using the orthogonal test method,the results were also compared with the situations without aerodynamic loads.It is shown that the most dominant factors a ff ecting linear and nonlinear critical speeds are different whether the aerodynamic loads considered or not.The damping of yaw damper is the most dominant influencing factor for linear critical speeds,while the damping of lateral damper is most dominant for nonlinear ones.When the influences of aerodynamic loads are considered,the linear critical speeds decrease with the rise of cross wind velocity,whereas it is not the case for the nonlinear critical speeds.The variation trends of critical speeds with suspension parameters can be significantly changed by aerodynamic loads.Combined actions of aerodynamic loads and suspension parameters also a ff ect the critical speeds.The effects of such joint action are more obvious for nonlinear critical speeds.
基金the Ministry of Science and Technology of Taiwan (Grants MOST 104-2221-E-327019, MOST 105-2221-E-327-014) for financial support of this study
文摘This paper proposes a systematic method, integrating the uniform design (UD) of experiments and quantum-behaved particle swarm optimization (QPSO), to solve the problem of a robust design for a railway vehicle suspension system. Based on the new nonlinear creep model derived from combining Hertz contact theory, Kalker's linear theory and a heuristic nonlinear creep model, the modeling and dynamic analysis of a 24 degree-of-freedom railway vehicle system were investigated. The Lyapunov indirect method was used to examine the effects of suspension parameters, wheel conicities and wheel rolling radii on critical hunting speeds. Generally, the critical hunting speeds of a vehicle system resulting from worn wheels with different wheel rolling radii are lower than those of a vehicle system having original wheels without different wheel rolling radii. Because of worn wheels, the critical hunting speed of a running railway vehicle substantially declines over the long term. For safety reasons, it is necessary to design the suspension system parameters to increase the robustness of the system and decrease the sensitive of wheel noises. By applying UD and QPSO, the nominal-the-best signal-to-noise ratio of the system was increased from -48.17 to -34.05 dB. The rate of improvement was 29.31%. This study has demonstrated that the integration of UD and QPSO can successfully reveal the optimal solution of suspension parameters for solving the robust design problem of a railway vehicle suspension system.
基金The project was supported by the National Natural Science Foundation of China(Grants 51805451,U1934202,and U2034210)the Sichuan Science and Technology Plan Project(Grant 2020YJ0074)+1 种基金the Fundamental Research Funds for the Central Universities(Grant 2682019CX43)the TPL Independent R&D Project(Grants 2018TPL_T08 and 2019TPL_T15).
文摘To study the vehicle hunting behavior and its coupling with car body vibrations,a simplified lateral-dynamics-intended railway vehicle model is developed.A two-truck vehicle is modeled as a 17 degrees-of-freedom rigid system,into which the car body flexural vibrations of torsion and bending modes are further integrated.The wheel/rail interaction employs a real-time calculation for the Hertzian normal contact,in which the nonlinear curvatures of wheel and rail profiles are presented as functions of wheelset lateral movement and/or yaw rotation.Then the tangential/creep forces are analytically expressed as the Hertzian contact patch geometry,and lead to a continuous and fast calculation compared to a look-up table interpolation.It is shown that the hunting frequencies of the vehicle model and a truck model differ significantly,which verifies the necessity of the whole vehicle model.In the case of low wheel/rail conicity,the hunting frequency increases linearly with vehicle speed,whereas it rises slowly at high speed for a large conicity.Comparison of hunting frequency and damping ratio between various conicities shows that first hunting(car body hunting)may occur when the vehicle is operated at a low speed in a small conicity case,while a second hunting(truck hunting)appears when the vehicle is operated at a high speed in a large conicity case.Stability analysis of linear and nonlinear vehicle models was carried out through coast down method and constant speed simulations.Results tell that the linear one overestimates the lateral vibrating.Whereas the structural vibrations of car body can be ignored in the stability analysis.Compared to existing simplified models for hunting stability study,the proposed simplified vehicle model released limitations in the nonlinear geometries of wheel/rail profiles,and it is suitable for a frequency-domain analysis by deriving the analytical expressions of the normal and tangential wheel/rail contact forces.