A hybrid central-upwind scheme is proposed. Two sub-schemes, the central difference scheme and the Roets flux difference splitting scheme, are hybridized by means of a binary sensor function. In order to examine the c...A hybrid central-upwind scheme is proposed. Two sub-schemes, the central difference scheme and the Roets flux difference splitting scheme, are hybridized by means of a binary sensor function. In order to examine the capability of the proposed hybrid scheme in computing compressible turbulent flow around a curved surface body, especially the flow involving shock wave, three typical eases are investigated by using detached-eddy simulation technique. Numerical results show good agreements with the experimental measurements. The present hybrid scheme can be applied to simulating the compressible flow around a curved surface body involving shock wave and turbulence.展开更多
Nowadays network virtualization is utterly popular.As a result,how to protect the virtual networks from attacking on the link is increasingly important.Existing schemes are mainly backup-based,which suffer from data l...Nowadays network virtualization is utterly popular.As a result,how to protect the virtual networks from attacking on the link is increasingly important.Existing schemes are mainly backup-based,which suffer from data loss and are helpless to such attacks like data tampering.To offer high security level,in this paper,we first propose a multipath and decision-making(MD) scheme which applies multipath simultaneously delivery and decision-making for protecting the virtual network.Considering different security requirement for virtual link,we devise a hybrid scheme to protect the virtual links.For the critical links,MD scheme is adopted.For the other links,we adopt the Shared Backup Scheme.Our simulation results indicate the proposed scheme can significantly increase the security level of the critical link high in the loss of less acceptance ratio.展开更多
The breakage and bending of ducts result in a difficulty to cope with ventilation issues in bidirectional excavation tunnels with a long inclined shaft using a single ventilation method based on ducts.To discuss the h...The breakage and bending of ducts result in a difficulty to cope with ventilation issues in bidirectional excavation tunnels with a long inclined shaft using a single ventilation method based on ducts.To discuss the hybrid ventilation system applied in bidirectional excavation tunnels with a long inclined shaft,this study has established a full-scale computational fluid dynamics model based on field tests,the Poly-Hexcore method,and the sliding mesh technique.The distribution of wind speed,temperature field,and CO in the tunnel are taken as indices to compare the ventilation efficiency of three ventilation systems(duct,duct-ventilation shaft,duct–ventilated shaft-axial fan).The results show that the hybrid ventilation scheme based on duct-ventilation shaft–axial fan performs the best among the three ventilation systems.Compared to the duct,the wind speed and cooling rate in the tunnel are enhanced by 7.5%–30.6%and 14.1%–17.7%,respectively,for the duct-vent shaft-axial fan condition,and the volume fractions of CO are reduced by 26.9%–73.9%.This contributes to the effective design of combined ventilation for bidirectional excavation tunnels with an inclined shaft,ultimately improving the air quality within the tunnel.展开更多
In this paper,a new kind of hybrid method based on the weighted essentially non-oscillatory(WENO)type reconstruction is proposed to solve hyperbolic conservation laws.Comparing the WENO schemes with/without hybridizat...In this paper,a new kind of hybrid method based on the weighted essentially non-oscillatory(WENO)type reconstruction is proposed to solve hyperbolic conservation laws.Comparing the WENO schemes with/without hybridization,the hybrid one can resolve more details in the region containing multi-scale structures and achieve higher resolution in the smooth region;meanwhile,the essentially oscillation-free solution could also be obtained.By adapting the original smoothness indicator in the WENO reconstruction,the stencil is distinguished into three types:smooth,non-smooth,and high-frequency region.In the smooth region,the linear reconstruction is used and the non-smooth region with the WENO reconstruction.In the high-frequency region,the mixed scheme of the linear and WENO schemes is adopted with the smoothness amplification factor,which could capture high-frequency wave efficiently.Spectral analysis and numerous examples are presented to demonstrate the robustness and performance of the hybrid scheme for hyperbolic conservation laws.展开更多
In this paper, an efficient hybrid shock capturing scheme is proposed to obtain accurate results both in the smooth region and around discontinuities for compressible flows. The hybrid algorithm is based on a fifth-or...In this paper, an efficient hybrid shock capturing scheme is proposed to obtain accurate results both in the smooth region and around discontinuities for compressible flows. The hybrid algorithm is based on a fifth-order weighted essentially non-oscillatory (WENO) scheme in the finite volume form to solve the smooth part of the flow field, which is coupled with a characteristic-based monotone upstream-centered scheme for conservation laws (MUSCL) to capture discontinuities. The hybrid scheme is intended to combine high resolution of MUSCL scheme and low dissipation of WENO scheme. The two ingredients in this hybrid scheme are switched with an indicator. Three typical indicators are chosen and compared. MUSCL and WENO are both shock capturing schemes making the choice of the indicator parameter less crucial. Several test cases are carried out to investigate hybrid scheme with different indicators in terms of accuracy and efficiency. Numerical results demonstrate that the hybrid scheme in the present work performs well in a broad range of problems.展开更多
The carbuncle phenomenon has been regarded as a spurious solution produced by most of contact-preserving methods.The hybrid method of combining high resolution flux with more dissipative solver is an attractive attemp...The carbuncle phenomenon has been regarded as a spurious solution produced by most of contact-preserving methods.The hybrid method of combining high resolution flux with more dissipative solver is an attractive attempt to cure this kind of non-physical phenomenon.In this paper,a matrix-based stability analysis for 2-D Euler equations is performed to explore the cause of instability of numerical schemes.By combining the Roe with HLL flux in different directions and different flux components,we give an interesting explanation to the linear numerical instability.Based on such analysis,some hybrid schemes are compared to illustrate different mechanisms in controlling shock instability.Numerical experiments are presented to verify our analysis results.The conclusion is that the scheme of restricting directly instability source is more stable than other hybrid schemes.展开更多
A hybrid monotonous finite element algorithm is developed in the present paper, based on a second-order-accurate finite element scheme and a first-accurate monotonous one derived from the former by a unilateral lumpin...A hybrid monotonous finite element algorithm is developed in the present paper, based on a second-order-accurate finite element scheme and a first-accurate monotonous one derived from the former by a unilateral lumping procedure in one dimensional case. The switch functions for the two dimensional Euler equation system are constructed locally, based on the gradient of the flow field, with special consideration on the information from neighboring elements. Examples show that the new scheme can eliminate oscillations near strong shocks obviously.展开更多
A total variation diminishing-weighted average flux (TVD-WAF)-based hybrid numerical scheme for the enhanced version of nonlinearly dispersive Boussinesq-type equations was developed. The one-dimensional governing e...A total variation diminishing-weighted average flux (TVD-WAF)-based hybrid numerical scheme for the enhanced version of nonlinearly dispersive Boussinesq-type equations was developed. The one-dimensional governing equations were rewritten in the conservative form and then discretized on a uniform grid. The finite volume method was used to discretize the flux term while the remaining terms were approximated with the finite difference method. The second-order TVD-WAF method was employed in conjunction with the Harten-Lax-van Leer (HLL) Riemann solver to calculate the numerical flux, and the variables at the cell interface for the local Riemann problem were reconstructed via the fourth- order monotone upstream-centered scheme for conservation laws (MUSCL). The time marching scheme based on the third-order TVD Runge- Kutta method was used to obtain numerical solutions. The model was validated through a series of numerical tests, in which wave breaking and a moving shoreline were treated. The good agreement between the computed results, documented analytical solutions, and experimental data demonstrates the correct discretization of the governing equations and high accuracy of the proposed scheme, and also conforms the advantages of the proposed shock-capturing scheme for the enhanced version of the Boussinesq model, including the convenience in the treatment of wave breaking and moving shorelines and without the need for a numerical filter.展开更多
Statistical inference is developed for the analysis of generalized type-Ⅱ hybrid censoring data under exponential competing risks model. In order to solve the problem that approximate methods make unsatisfactory perf...Statistical inference is developed for the analysis of generalized type-Ⅱ hybrid censoring data under exponential competing risks model. In order to solve the problem that approximate methods make unsatisfactory performances in the case of small sample size,we establish the exact conditional distributions of estimators for parameters by conditional moment generating function(CMGF). Furthermore, confidence intervals(CIs) are constructed by exact distributions, approximate distributions as well as bootstrap method respectively,and their performances are evaluated by Monte Carlo simulations. And finally, a real data set is analyzed to illustrate all the methods developed here.展开更多
Publish/subscribe(pub/sub) paradigm is the main communication model for Information-Centric Network(ICN) proposals.A key issue for pub/sub system is how to route the content objects to the correct subscribers,and ICN ...Publish/subscribe(pub/sub) paradigm is the main communication model for Information-Centric Network(ICN) proposals.A key issue for pub/sub system is how to route the content objects to the correct subscribers,and ICN is no exception.ICN network would be divided into core domain and many edge domains as today's internet does.HHR(Hierarchy Hybrid Routing scheme) is presented for ICN:A Chord-like routing scheme is used in core domain,while edge domains routing structure can be classified into three categories,Local Routing(LR),Delivery of Local Publication to Core domain(DLPC),and Remote Publication Routing into edge domain(RPR).LR can be decided by each edge domain,which determined by many factors,such as locality characteristic for pub/sub information and local policies.A hierarchical routing algorithm is proposed to solve DLPC and RPR simultaneously.Simulation results demonstrate that HHR can be fast deployed,and can be applied in large scale network or dynamic subscription environment.展开更多
Single-carrier frequency-division multiple access (SC-FDMA) and orthogonal frequency division multiple access (OFDMA) systems are new orthogonal multiple access systems. They have been adopted in the 3GPP long term ev...Single-carrier frequency-division multiple access (SC-FDMA) and orthogonal frequency division multiple access (OFDMA) systems are new orthogonal multiple access systems. They have been adopted in the 3GPP long term evolution (3GPP-LTE). In these systems, there are only two types of subcarrier mapping schemes which are the interleaved and the localized. So, introducing a new subcarrier mapping scheme is an important issue, which is the main objective of this paper. In this paper, a hybrid subcarrier mapping scheme is proposed and examined for the SC-FDMA system. Monte Carlo simulations are performed to compare the performance of the proposed scheme with that of the interleaved and the localized schemes. It is shown that a hybrid scheme provides better performance than that of the localized and the same performance as that of the interleaved scheme and increased robustness to carrier frequency offset (CFO) at the expense of increased envelope fluctuations.展开更多
Being progressively applied in the design of highly active catalysts for energy devices,machine learning(ML)technology has shown attractive ability of dramatically reducing the computational cost of the traditional de...Being progressively applied in the design of highly active catalysts for energy devices,machine learning(ML)technology has shown attractive ability of dramatically reducing the computational cost of the traditional density functional theory(DFT)method,showing a particular advantage for the simulation of intricate system catalysis.Starting with a basic description of the whole workflow of the novel DFT-based and ML-accelerated(DFT-ML)scheme,and the common algorithms useable for machine learning,we presented in this paper our work on the development and performance test of a DFT-based ML method for catalysis program(DMCP)to implement the DFT-ML scheme.DMCP is an efficient and user-friendly program with the flexibility to accommodate the needs of performing ML calculations based on the data generated by DFT calculations or from materials database.We also employed an example of transition metal phthalocyanine double-atom catalysts as electrocatalysts for carbon reduction reaction to exhibit the general workflow of the DFT-ML hybrid scheme and our DMCP program.展开更多
基金Supported by the National Science Foundation for Post-doctoral Scientists of China(20100481141,201104567)the Natural Science Foundation of Jiangsu Province(BK2011723)the Planned Projects for Postdoctoral Research Foundation of Jiangsu Province(0902001C)~~
文摘A hybrid central-upwind scheme is proposed. Two sub-schemes, the central difference scheme and the Roets flux difference splitting scheme, are hybridized by means of a binary sensor function. In order to examine the capability of the proposed hybrid scheme in computing compressible turbulent flow around a curved surface body, especially the flow involving shock wave, three typical eases are investigated by using detached-eddy simulation technique. Numerical results show good agreements with the experimental measurements. The present hybrid scheme can be applied to simulating the compressible flow around a curved surface body involving shock wave and turbulence.
基金supported by Foundation for Innovative Research Groups of the National Natural Science Foundation of China(61521003)National Key Research and Development Plan(2016YFB0800101)National Natural Science Foundation of China(61602509)
文摘Nowadays network virtualization is utterly popular.As a result,how to protect the virtual networks from attacking on the link is increasingly important.Existing schemes are mainly backup-based,which suffer from data loss and are helpless to such attacks like data tampering.To offer high security level,in this paper,we first propose a multipath and decision-making(MD) scheme which applies multipath simultaneously delivery and decision-making for protecting the virtual network.Considering different security requirement for virtual link,we devise a hybrid scheme to protect the virtual links.For the critical links,MD scheme is adopted.For the other links,we adopt the Shared Backup Scheme.Our simulation results indicate the proposed scheme can significantly increase the security level of the critical link high in the loss of less acceptance ratio.
基金Project(N2022G031)supported by the Science and Technology Research and Development Program Project of China RailwayProjects(2022-Key-23,2021-Special-01A)supported by the Science and Technology Research and Development Program Project of China Railway Group LimitedProject(52308419)supported by the National Natural Science Foundation of China。
文摘The breakage and bending of ducts result in a difficulty to cope with ventilation issues in bidirectional excavation tunnels with a long inclined shaft using a single ventilation method based on ducts.To discuss the hybrid ventilation system applied in bidirectional excavation tunnels with a long inclined shaft,this study has established a full-scale computational fluid dynamics model based on field tests,the Poly-Hexcore method,and the sliding mesh technique.The distribution of wind speed,temperature field,and CO in the tunnel are taken as indices to compare the ventilation efficiency of three ventilation systems(duct,duct-ventilation shaft,duct–ventilated shaft-axial fan).The results show that the hybrid ventilation scheme based on duct-ventilation shaft–axial fan performs the best among the three ventilation systems.Compared to the duct,the wind speed and cooling rate in the tunnel are enhanced by 7.5%–30.6%and 14.1%–17.7%,respectively,for the duct-vent shaft-axial fan condition,and the volume fractions of CO are reduced by 26.9%–73.9%.This contributes to the effective design of combined ventilation for bidirectional excavation tunnels with an inclined shaft,ultimately improving the air quality within the tunnel.
基金the National Numerical Windtunnel Project NNW2019ZT4-B08the NSFC grant No.11871449.
文摘In this paper,a new kind of hybrid method based on the weighted essentially non-oscillatory(WENO)type reconstruction is proposed to solve hyperbolic conservation laws.Comparing the WENO schemes with/without hybridization,the hybrid one can resolve more details in the region containing multi-scale structures and achieve higher resolution in the smooth region;meanwhile,the essentially oscillation-free solution could also be obtained.By adapting the original smoothness indicator in the WENO reconstruction,the stencil is distinguished into three types:smooth,non-smooth,and high-frequency region.In the smooth region,the linear reconstruction is used and the non-smooth region with the WENO reconstruction.In the high-frequency region,the mixed scheme of the linear and WENO schemes is adopted with the smoothness amplification factor,which could capture high-frequency wave efficiently.Spectral analysis and numerous examples are presented to demonstrate the robustness and performance of the hybrid scheme for hyperbolic conservation laws.
文摘In this paper, an efficient hybrid shock capturing scheme is proposed to obtain accurate results both in the smooth region and around discontinuities for compressible flows. The hybrid algorithm is based on a fifth-order weighted essentially non-oscillatory (WENO) scheme in the finite volume form to solve the smooth part of the flow field, which is coupled with a characteristic-based monotone upstream-centered scheme for conservation laws (MUSCL) to capture discontinuities. The hybrid scheme is intended to combine high resolution of MUSCL scheme and low dissipation of WENO scheme. The two ingredients in this hybrid scheme are switched with an indicator. Three typical indicators are chosen and compared. MUSCL and WENO are both shock capturing schemes making the choice of the indicator parameter less crucial. Several test cases are carried out to investigate hybrid scheme with different indicators in terms of accuracy and efficiency. Numerical results demonstrate that the hybrid scheme in the present work performs well in a broad range of problems.
基金supported by the National Natural Science Foundation of China(11071025)the Foundation of CAEP(2010A0202010)the Foundation of National Key Laboratory of Science and Technology Computation Physics and the Defense Industrial Technology Development Program(B1520110011).
文摘The carbuncle phenomenon has been regarded as a spurious solution produced by most of contact-preserving methods.The hybrid method of combining high resolution flux with more dissipative solver is an attractive attempt to cure this kind of non-physical phenomenon.In this paper,a matrix-based stability analysis for 2-D Euler equations is performed to explore the cause of instability of numerical schemes.By combining the Roe with HLL flux in different directions and different flux components,we give an interesting explanation to the linear numerical instability.Based on such analysis,some hybrid schemes are compared to illustrate different mechanisms in controlling shock instability.Numerical experiments are presented to verify our analysis results.The conclusion is that the scheme of restricting directly instability source is more stable than other hybrid schemes.
文摘A hybrid monotonous finite element algorithm is developed in the present paper, based on a second-order-accurate finite element scheme and a first-accurate monotonous one derived from the former by a unilateral lumping procedure in one dimensional case. The switch functions for the two dimensional Euler equation system are constructed locally, based on the gradient of the flow field, with special consideration on the information from neighboring elements. Examples show that the new scheme can eliminate oscillations near strong shocks obviously.
基金supported by the National Natural Science Foundation of China(Grant No.51579034)the Open Fund of the Key Laboratory of Ocean Circulation and Waves,Chinese Academy of Sciences(Grant No.KLOCW1502)
文摘A total variation diminishing-weighted average flux (TVD-WAF)-based hybrid numerical scheme for the enhanced version of nonlinearly dispersive Boussinesq-type equations was developed. The one-dimensional governing equations were rewritten in the conservative form and then discretized on a uniform grid. The finite volume method was used to discretize the flux term while the remaining terms were approximated with the finite difference method. The second-order TVD-WAF method was employed in conjunction with the Harten-Lax-van Leer (HLL) Riemann solver to calculate the numerical flux, and the variables at the cell interface for the local Riemann problem were reconstructed via the fourth- order monotone upstream-centered scheme for conservation laws (MUSCL). The time marching scheme based on the third-order TVD Runge- Kutta method was used to obtain numerical solutions. The model was validated through a series of numerical tests, in which wave breaking and a moving shoreline were treated. The good agreement between the computed results, documented analytical solutions, and experimental data demonstrates the correct discretization of the governing equations and high accuracy of the proposed scheme, and also conforms the advantages of the proposed shock-capturing scheme for the enhanced version of the Boussinesq model, including the convenience in the treatment of wave breaking and moving shorelines and without the need for a numerical filter.
基金Supported by the National Natural Science Foundation of China(71401134, 71571144, 71171164) Supported by the Natural Science Basic Research Program of Shaanxi Province(2015JM1003)+1 种基金 Sup- ported by the Program of International Cooperation and Exchanges in Science and Technology Funded of Shaanxi Province(2016KW-033) Supported by the Scholarship Program of Shanxi Province(2016-015)
文摘Statistical inference is developed for the analysis of generalized type-Ⅱ hybrid censoring data under exponential competing risks model. In order to solve the problem that approximate methods make unsatisfactory performances in the case of small sample size,we establish the exact conditional distributions of estimators for parameters by conditional moment generating function(CMGF). Furthermore, confidence intervals(CIs) are constructed by exact distributions, approximate distributions as well as bootstrap method respectively,and their performances are evaluated by Monte Carlo simulations. And finally, a real data set is analyzed to illustrate all the methods developed here.
基金supported by 973 Program(2013CB329103)NSFC Fund (61271165,61301153)Program for Changjiang Scholars and Innovative Research Team (PCSIRT) in University and the 111 Project B14039
文摘Publish/subscribe(pub/sub) paradigm is the main communication model for Information-Centric Network(ICN) proposals.A key issue for pub/sub system is how to route the content objects to the correct subscribers,and ICN is no exception.ICN network would be divided into core domain and many edge domains as today's internet does.HHR(Hierarchy Hybrid Routing scheme) is presented for ICN:A Chord-like routing scheme is used in core domain,while edge domains routing structure can be classified into three categories,Local Routing(LR),Delivery of Local Publication to Core domain(DLPC),and Remote Publication Routing into edge domain(RPR).LR can be decided by each edge domain,which determined by many factors,such as locality characteristic for pub/sub information and local policies.A hierarchical routing algorithm is proposed to solve DLPC and RPR simultaneously.Simulation results demonstrate that HHR can be fast deployed,and can be applied in large scale network or dynamic subscription environment.
文摘Single-carrier frequency-division multiple access (SC-FDMA) and orthogonal frequency division multiple access (OFDMA) systems are new orthogonal multiple access systems. They have been adopted in the 3GPP long term evolution (3GPP-LTE). In these systems, there are only two types of subcarrier mapping schemes which are the interleaved and the localized. So, introducing a new subcarrier mapping scheme is an important issue, which is the main objective of this paper. In this paper, a hybrid subcarrier mapping scheme is proposed and examined for the SC-FDMA system. Monte Carlo simulations are performed to compare the performance of the proposed scheme with that of the interleaved and the localized schemes. It is shown that a hybrid scheme provides better performance than that of the localized and the same performance as that of the interleaved scheme and increased robustness to carrier frequency offset (CFO) at the expense of increased envelope fluctuations.
文摘Being progressively applied in the design of highly active catalysts for energy devices,machine learning(ML)technology has shown attractive ability of dramatically reducing the computational cost of the traditional density functional theory(DFT)method,showing a particular advantage for the simulation of intricate system catalysis.Starting with a basic description of the whole workflow of the novel DFT-based and ML-accelerated(DFT-ML)scheme,and the common algorithms useable for machine learning,we presented in this paper our work on the development and performance test of a DFT-based ML method for catalysis program(DMCP)to implement the DFT-ML scheme.DMCP is an efficient and user-friendly program with the flexibility to accommodate the needs of performing ML calculations based on the data generated by DFT calculations or from materials database.We also employed an example of transition metal phthalocyanine double-atom catalysts as electrocatalysts for carbon reduction reaction to exhibit the general workflow of the DFT-ML hybrid scheme and our DMCP program.