The increased concern over global climate change and lack of long-term sustainability of fossil fuels in the projected future has prompted further research into advanced alternative fuel vehicles to reduce vehicle emi...The increased concern over global climate change and lack of long-term sustainability of fossil fuels in the projected future has prompted further research into advanced alternative fuel vehicles to reduce vehicle emissions and fuel consumption. One of the primary advanced vehicle research areas involves electrification and hybridization of vehicles. As hybrid-electric vehicle technology has advanced, so has the need for more innovative control schemes for hybrid vehicles, including the development and optimization of hybrid powertrain transmission shift schedules. The hybrid shift schedule works in tandem with a cost function-based torque split algorithm that dynamically determines the optimal torque command for the electric motor and engine. The focus of this work is to develop and analyze the benefits and limitations of two different shift schedules for a position-3 (P3) parallel hybrid-electric vehicle. a traditional two-parameter shift schedule that operates as a function of vehicle accelerator position and vehicle speed (state of charge (SOC) independent shift schedule), and a three-parameter shift schedule that also adapts to fluctuations in the state of charge of the high voltage batteries (SOC dependent shift schedule). The shift schedules were generated using an exhaustive search coupled with a fitness function to evaluate all possible vehicle operating points. The generated shift schedules were then tested in the software-in-the-loop (SIL) environment and the vehicle-in-the-loop (VIL) environment and compared to each other, as well as to the stock 8L45 8-speed transmission shift schedule. The results show that both generated shift schedules improved upon the stock transmission shift schedule used in the hybrid powertrain comparing component efficiency, vehicle efficiency, engine fuel economy, and vehicle fuel economy.展开更多
The potential benefits of hybrid-electric or all-electric propulsion have led to a growing interest in this topic over the past decade.Preliminary design of propulsion systems and innovative configurations has been ex...The potential benefits of hybrid-electric or all-electric propulsion have led to a growing interest in this topic over the past decade.Preliminary design of propulsion systems and innovative configurations has been extensively discussed in literature,but steps towards higher levels of technological readiness,optimisation algorithms based on reliable weight estimation and simulationbased mission analysis are required.This paper focuses on the integration of a method for evaluating the lateral-directional controllability of an aircraft within a design chain that integrates aero-propulsive interactions,accurate modelling of the fuel system,and mid-fidelity estimation of the structural weight.Furthermore,the present work proposes a strategy for powerplant management in scenarios with an inoperative chain element.Benefits of hybrid-electric propulsion on the design of the vertical tail plane are evaluated involving the analysis of multiple failure scenarios and certification requirements.The proposed application concerns a commuter aircraft.展开更多
文摘The increased concern over global climate change and lack of long-term sustainability of fossil fuels in the projected future has prompted further research into advanced alternative fuel vehicles to reduce vehicle emissions and fuel consumption. One of the primary advanced vehicle research areas involves electrification and hybridization of vehicles. As hybrid-electric vehicle technology has advanced, so has the need for more innovative control schemes for hybrid vehicles, including the development and optimization of hybrid powertrain transmission shift schedules. The hybrid shift schedule works in tandem with a cost function-based torque split algorithm that dynamically determines the optimal torque command for the electric motor and engine. The focus of this work is to develop and analyze the benefits and limitations of two different shift schedules for a position-3 (P3) parallel hybrid-electric vehicle. a traditional two-parameter shift schedule that operates as a function of vehicle accelerator position and vehicle speed (state of charge (SOC) independent shift schedule), and a three-parameter shift schedule that also adapts to fluctuations in the state of charge of the high voltage batteries (SOC dependent shift schedule). The shift schedules were generated using an exhaustive search coupled with a fitness function to evaluate all possible vehicle operating points. The generated shift schedules were then tested in the software-in-the-loop (SIL) environment and the vehicle-in-the-loop (VIL) environment and compared to each other, as well as to the stock 8L45 8-speed transmission shift schedule. The results show that both generated shift schedules improved upon the stock transmission shift schedule used in the hybrid powertrain comparing component efficiency, vehicle efficiency, engine fuel economy, and vehicle fuel economy.
基金The ELICA project leading to this application has received funding from the Clean Sky 2 Joint Undertaking(JU)(No.864551)The JU receives support from the European Union’s Horizon 2020 research and innovation programme。
文摘The potential benefits of hybrid-electric or all-electric propulsion have led to a growing interest in this topic over the past decade.Preliminary design of propulsion systems and innovative configurations has been extensively discussed in literature,but steps towards higher levels of technological readiness,optimisation algorithms based on reliable weight estimation and simulationbased mission analysis are required.This paper focuses on the integration of a method for evaluating the lateral-directional controllability of an aircraft within a design chain that integrates aero-propulsive interactions,accurate modelling of the fuel system,and mid-fidelity estimation of the structural weight.Furthermore,the present work proposes a strategy for powerplant management in scenarios with an inoperative chain element.Benefits of hybrid-electric propulsion on the design of the vertical tail plane are evaluated involving the analysis of multiple failure scenarios and certification requirements.The proposed application concerns a commuter aircraft.