期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
An Investigation on Hydrogen Storage Kinetics of the Nanocrystalline and Amorphous LaMg12-type Alloys Synthesized by Mechanical Milling 被引量:2
1
作者 张羊换 WANG Jinglong +3 位作者 ZHANG Peilong ZHU Yongguo HOU Zhonghui SHANG Hongwei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第2期278-287,共10页
Nanocrystalline and amorphous LaMg_(12)-type LaMg_(11)Ni + x wt% Ni(x = 100, 200) alloys were synthesized by mechanical milling. Effects of Ni content and milling time on the gaseous and electrochemical hydroge... Nanocrystalline and amorphous LaMg_(12)-type LaMg_(11)Ni + x wt% Ni(x = 100, 200) alloys were synthesized by mechanical milling. Effects of Ni content and milling time on the gaseous and electrochemical hydrogen storage kinetics of as-milled alloys were investigated systematically. The electrochemical hydrogen storage properties of the as-milled alloys were tested by an automatic galvanostatic system. And the gaseous hydrogen storage properties were investigated by Sievert apparatus and a differential scanning calorimeter(DSC) connected with a H_2 detector. Hydrogen desorption activation energy of alloy hydrides was estimated by using Arrhenius and Kissinger methods. It is found that the increase of Ni content significantly improves the gaseous and electrochemical hydrogen storage kinetic performances of as-milled alloys. Furthermore, as ball milling time changes, the maximum of both high rate discharge ability(HRD) and the gaseous hydriding rate of as-milled alloys can be obtained. But the hydrogen desorption kinetics of alloys always increases with the extending of milling time. Moreover, the improved gaseous hydrogen storage kinetics of alloys are ascribed to a decrease in the hydrogen desorption activation energy caused by increasing Ni content and milling time. 展开更多
关键词 LaMg12 alloy mechanical milling activation energy hydrogen storage kinetics
原文传递
Hydrogen Storage Thermodynamics and Dynamics of Nd–Mg–NiBased Nd Mg_(12^-)Type Alloys Synthesized by Mechanical Milling 被引量:1
2
作者 Yang-Huan Zhang Ze-Ming Yuan +3 位作者 Wen-Gang Bu Feng Hu Ying Cai Dong-Liang Zhao 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2016年第6期577-586,共10页
Nanocrystalline and amorphous Nd Mg_(12^-)type Nd Mg_(11)Ni+ x wt% Ni(x=100, 200) hydrogen storage alloys were synthesized by mechanical milling. The effects of Ni content and milling time on hydrogen storage t... Nanocrystalline and amorphous Nd Mg_(12^-)type Nd Mg_(11)Ni+ x wt% Ni(x=100, 200) hydrogen storage alloys were synthesized by mechanical milling. The effects of Ni content and milling time on hydrogen storage thermodynamics and dynamics of the alloys were systematically investigated. The gaseous hydrogen absorption and desorption properties were investigated by Sieverts apparatus and differential scanning calorimeter connected with a H_2 detector. Results show that increasing Ni content significantly improves hydrogen absorption and desorption kinetics of the alloys. Furthermore,varying milling time has an obvious effect on the hydrogen storage properties of the alloys. Hydrogen absorption saturation ratio(R^a_(10); a ratio of the hydrogen absorption capacity in 10 min to the saturated hydrogen absorption capacity) of the alloys obtains the maximum value with varying milling time. Hydrogen desorption ratio(R^d_(20), a ratio of the hydrogen desorption capacity in 20 min to the saturated hydrogen absorption capacity) of the alloys always increases with extending milling time. The improved hydrogen desorption kinetics of the alloys are considered to be ascribed to the decreased hydrogen desorption activation energy caused by increasing Ni content and milling time. 展开更多
关键词 NdMg12 alloy hydrogen storage Mechanical milling Activation energy Kinetics
原文传递
Hydrogen Storage Kinetics of Nanocrystalline and Amorphous LaMg_(12)-Type Alloy–Ni Composites Synthesized by Mechanical Milling 被引量:1
3
作者 Yanghuan Zhang Baowei Li +4 位作者 Huiping Ren Tai Yang Shihai Guo Yan Qi Dongliang Zhao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第3期218-225,共8页
The nanocrystalline and amorphous LaMg11Ni + x wt% Ni (x = 100, 200) composites were synthesized by the mechanical milling, and their gaseous and electrochemical hydrogen storage kinetics performance were systemati... The nanocrystalline and amorphous LaMg11Ni + x wt% Ni (x = 100, 200) composites were synthesized by the mechanical milling, and their gaseous and electrochemical hydrogen storage kinetics performance were systematically investigated, The results indicate that the as-milled composites exhibit excellent hydrogen storage kinetic performances, and increasing Ni content significantly facilitates the improvement of the hydrogen storage kinetics properties of the composites. The gaseous and electrochemical hydrogen storage kinetics of the composites reaches a maximum value with the variation of milling time. Increasing Ni content and milling time both make the hydrogen desorption activation energy lower, which are responsible for the enhancement in the hydrogen storage kinetics properties of the composites. The diffusion coefficient of hydrogen atom and activation enthalpy of charge transfer on the surface of the as-milled composites were also calculated, which are considered to be the dominated factors for the electrochemical high rate discharge ability. 展开更多
关键词 LaMg12 alloy Mechanical milling Activation energy hydrogen storage kinetics
原文传递
Hydrogen storage thermodynamic and kinetic characteristics of PrMg12-type alloys synthesized by mechanical milling 被引量:1
4
作者 Jin-liang Gao Yan Qi +3 位作者 Ya-qin Li Hong-wei Shang Dong-liang Zhao Yang-huan Zhang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2017年第2期198-205,共8页
To improve the hydrogen storage performance of PrMg12-type alloys, Ni was adopted to replace partially Mg in the alloys. The PrMgllNi+x wt.% Ni (x=100, 200) alloys were prepared via mechanical milling. The phase st... To improve the hydrogen storage performance of PrMg12-type alloys, Ni was adopted to replace partially Mg in the alloys. The PrMgllNi+x wt.% Ni (x=100, 200) alloys were prepared via mechanical milling. The phase structures and morphology of the experimental alloys were in vestigated by X-ray diffraction and transmission electron microscopy. The results show that increasing milling time and Ni content accelerate the formation of nanocrystalline and amorphous structure. The gaseous hydrogen storage properties of the experimental alloys were determined by differential scanning calorimetry (DSC) and Sievert apparatus. In addition, increasing milling time makes the hydrogenation rates of the alloys augment firstly and decline subsequently and the dehydrogenation rate always increases. The maximum capacity is 5. 572 wt. % for the x = 100 alloy and 5. 829 wt. % for the x = 200 alloy, respectively. The enthalpy change ( △H ), entropy change (△S) and the dehydrogenation activation energy (Exde) markedly lower with increasing the milling time and the Ni content due to the generation of nanocrystalline and amorphous structure. 展开更多
关键词 PrMg12 alloy Mechanical milling Activation energy hydrogen storage dynamics Thermodynamics
原文传递
Phase Stability in Mechanically Alloyed Mg–Ni System Studied by Experiments and Thermodynamic Calculations
5
作者 Mohammad Hossein Enayati Fathallah Karimzadeh +1 位作者 Soheil Sabooni Majid Jafari 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2015年第8期1002-1007,共6页
In this study, microstructural evolution of Mg–Ni alloy during mechanical alloying(MA) was investigated.Also, a thermodynamic approach was utilized to predict the most stable phases formed in Mg–Ni alloy after MA.... In this study, microstructural evolution of Mg–Ni alloy during mechanical alloying(MA) was investigated.Also, a thermodynamic approach was utilized to predict the most stable phases formed in Mg–Ni alloy after MA. The phase composition and microstructural properties of Mg–Ni alloy were assessed by X-ray diffractometry, high-resolution field emission scanning electron microscopy and high-resolution transmission electron microscopy. The results showed that ball milling of magnesium and nickel powder mixture for 70 h yields nanostructural Mg2Ni compound with an average grain size of ~20 nm. Thermodynamic calculations revealed that in the composition ranges of 0.0 / XMg/ 0.03(at.%)and 0.97 / XMg/ 1, there is no driving force for amorphous phase formation. In the composition range of 0.07 / XMg/ 0.93, the change of Gibbs free energy for amorphous phase formation was more negative than solid solution.While for XMg= 0.66(nominal composition of Mg2Ni intermetallic phase), the change of Gibbs free energy for intermetallic phase was found to be more negative than both amorphous and solid solution phases indicating that Mg2Ni intermetallic compound is the most stable phase, in agreement with the experimental observations. 展开更多
关键词 Mechanical alloying Nanocrystalline hydrogen storage material Mg2Ni Thermodynamics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部