In this study,to meet the stringent requirements on the hydrophobicity of nano-SiO_(2)particles for use in depressurization and enhanced injection operations in high-temperature and high-salinity oil reservoirs,second...In this study,to meet the stringent requirements on the hydrophobicity of nano-SiO_(2)particles for use in depressurization and enhanced injection operations in high-temperature and high-salinity oil reservoirs,secondary chemical grafting modification of nano-SiO_(2)is performed using a silane coupling agent to prepare superhydrophobic nano-SiO_(2) particles.Using these superhydrophobic nano-SiO_(2)particles as the core agent,and liquid paraffin or diesel as the dispersion medium,a uniform dispersion of nano-SiO_(2)particles is achieved under high-speed stirring,and a chemically enhanced water injection system with colloidal stability that can be maintained for more than 60 d is successfully developed.Using this system,a field test of depressurization and enhanced injection is carried out on six wells in an oilfield,and the daily oil production level is increased by 11 t.The cumulative increased water injection is 58784 m^(3),the effective rate of the measures was 100%,and the average validity period is 661 d.展开更多
Ta-containing TiO2 films with Ta contents of 5%, 20%, 33% (mole fraction) were sol-gel coated on the surface roughened Ti6AI4V alloy by dip coating method for biomedical applications. The Ta-TiO2 films on 1.5 mol/L ...Ta-containing TiO2 films with Ta contents of 5%, 20%, 33% (mole fraction) were sol-gel coated on the surface roughened Ti6AI4V alloy by dip coating method for biomedical applications. The Ta-TiO2 films on 1.5 mol/L NaOH-HCI pretreated substrate are adherent, but there are cracks for the sample with 33% Ta. X-ray photoelectron spectroscopy results show that Ti and Ta exist as TiP2 and Ta205 in the film, and A1 element is not detectable. X-ray diffraction and Raman scattering analyses reveal that the addition of Ta decreases crystallization of the films. Potentiodynamic polarization test in a Ca-free Hank's balanced solution demonstrates that the coating samples markedly improve the corrosion resistance compared with the polished sample. The addition of Ta impedes UV light-induced hydrophilic conversion of the coating samples. The sample with 20% Ta has enough film integrity and hydrophilic conversion rate, and is expected to possess good biological properties.展开更多
Nanowires with anisotropic morphologies have been applied in various scientific and technological areas.It is also widely employed to fabricate nanowires into high-dimensional superstructures(arrays,networks etc.)to o...Nanowires with anisotropic morphologies have been applied in various scientific and technological areas.It is also widely employed to fabricate nanowires into high-dimensional superstructures(arrays,networks etc.)to overcome the shortcomings of low-dimensional nanowires.However,typical strategies for constructing these superstructures are restricted to complicated and harsh synthetic conditions,not to mention unique 3D structures with advanced properties beyond common superstructures.Herein,we report an unusual network ofα-MnO_(2)nanowires with structure-induced hydrophilicity and conductivity.In the network,the nanowires are interconnected from all directions by nodes,and the 3D network structure is formed from the endless connection of nodes in a node-by-node way.The unique network structure brings about high hydrophilicity and conductivity,both of which are positive factors for an efficient electrocatalyst.Accordingly,the α-MnO_(2) network was tested for electrocatalytic water oxidation and showed significantly enhanced activity compared with isolatedα-MnO_(2)nanowires and 3Dα-MnO_(2)microspheres.This study not only provides a synthetic route toward an advanced network structure but also a new idea for the design of materials for electrochemistry with both efficient mass diffusion and charge transfer.展开更多
Graphitic carbon nitride(g-C_(3)N_(4))has attracted great interest in photocatalysis and photoelectrocatalysis.However,their poor hydrophilicity poses a great challenge for their applications in aqueous environment.He...Graphitic carbon nitride(g-C_(3)N_(4))has attracted great interest in photocatalysis and photoelectrocatalysis.However,their poor hydrophilicity poses a great challenge for their applications in aqueous environment.Here,we demonstrate synthesis of a hydrophilic bi-functional hierarchical architecture by the assembly of B-doped g-C_(3)N_(4)nanoplatelets.Such hierarchical B-doped g-C_(3)N_(4)material enables full utilization of their highly enhanced visible light absorption and photogenerated carrier separation in aqueous medium,leading to an excellent photocatalytic H_(2)O_(2)production rate of 4240.3μM g^(-1)h^(-1),2.84,2.64 and 2.13 times higher than that of the bulk g-C_(3)N_(4),g-C_(3)N_(4)nanoplatelets and bulk B doped g-C_(3)N_(4),respectively.Photoanodes based on these hierarchical architectures can generate an unprecedented photocurrent density of 1.72 m A cm^(-2)at 1.23 V under AM 1.5 G illumination for photoelectrochemical water splitting.This work makes a fundamental improvement towards large-scale exploitation of highly active,hydrophilic and stable metal-free g-C_(3)N_(4)photocatalysts for various practical applications.展开更多
TiO2-SiO2 thin films have been prepared on slide glass substrates by sol-gel method, and the effect of SiO2 additive on photo-generated hydrophilicity of TiO2 thin film was investigated by measuring the contact angle ...TiO2-SiO2 thin films have been prepared on slide glass substrates by sol-gel method, and the effect of SiO2 additive on photo-generated hydrophilicity of TiO2 thin film was investigated by measuring the contact angle of water, the microstructure, the transmittance, the photocatalytic activity and the specific surface area . The results showed that 10mol% of SiO2 additive was the most effective for decreasing contact angle of water. The SiO2 additive of less than 30mol% has a suppressive effect on the crystal growth of anatase in calcinations, resulting in a large surface area. Consequently, the super-hydrophilicity was improved.展开更多
The overall photocatalytic CO_(2) reduction reaction(OPCRR)that can directly convert CO_(2) and H_(2)O into fuels represents a promising renewable energy conversion technology.As a typical redox reaction,the OPCRR inv...The overall photocatalytic CO_(2) reduction reaction(OPCRR)that can directly convert CO_(2) and H_(2)O into fuels represents a promising renewable energy conversion technology.As a typical redox reaction,the OPCRR involves two half-reactions:the CO_(2) reduction half-reaction(CRHR)and the water oxidation half-reaction(WOHR).Generally,both half-reactions can be promoted by adjusting the wettability of catalysts.However,there is a contradiction in wettability requirements for the two half-reactions.Specifically,CRHR prefers a hydrophobic surface that can accumulate more CO_(2) molecules on the active sites,ensuring the appropriate ratio of gas-phase(CO_(2))to liquid-phase(H_(2)O)reactants.Conversely,the WOHR prefers a hydrophilic surface that can promote the departure of the gaseous product(O_(2))from the catalyst surface,preventing isolation between active sites and the reactant(H_(2)O).Here,we successfully reconciled the contradictory wettability requirements for the CRHR and WOHR by creating an alternately hydrophobic catalyst.This was achieved through a selectively hydrophobic modification method and a charge-transfer-control strategy.Consequently,the collaboratively promoted CRHR and WOHR led to a significantly enhanced OPCRR with a solar-to-fuel conversion efficiency of 0.186%.Notably,in ethanol production,the catalyst exhibited a 10.64-fold increase in generation rate(271.44μmol g^(-1)h~(-1))and a 4-fold increase in selectivity(55.77%)compared to the benchmark catalyst.This innovative approach holds great potential for application in universal overall reactions involving gas participation.展开更多
LiMn_(2)O_(4)(LMO)electrochemical lithium-ion pump has gained widespread attention due to its green,high efficiency,and low energy consumption in selectively extracting lithium from brine.However,collapse of crystal s...LiMn_(2)O_(4)(LMO)electrochemical lithium-ion pump has gained widespread attention due to its green,high efficiency,and low energy consumption in selectively extracting lithium from brine.However,collapse of crystal structure and loss of lithium extraction capacity caused by Mn dissolution loss limits its industrialized application.Hence,a multifunctional coating was developed by depositing amorphous AlPO_(4)on the surface of LMO using sol-gel method.The characterization and electrochemical performance test provided insights into the mechanism of Li^(+)embedment and de-embedment and revealed that multifunctional AlPO_(4)can reconstruct the physical and chemical state of LMO surface to improve the interface hydrophilicity,promote the transport of Li^(+),strengthen cycle stability.Remarkably,after 20 cycles,the capacity retention rate of 0.5AP-LMO reached 93.6%with only 0.147%Mn dissolution loss.The average Li^(+)release capacity of 0.5AP-LMO//Ag system in simulated brine is 28.77 mg/(g h),which is 90.4%higher than LMO.Encouragingly,even in the more complex Zabuye real brine,0.5AP-LMO//Ag can still maintain excellent lithium extraction performance.These results indicate that the 0.5AP-LMO//Ag lithium-ion pump shows promising potential as a Li^(+)selective extraction system.展开更多
Objective To evaluate CC2 (N, N’-dichloro-bis [2, 4, 6-trichlorophenyl] urea) invarious hydrophilic and lipophilic formulations as a personnel decontaminant for sulphurmustard (SM). Methods Twenty percent of CC...Objective To evaluate CC2 (N, N’-dichloro-bis [2, 4, 6-trichlorophenyl] urea) invarious hydrophilic and lipophilic formulations as a personnel decontaminant for sulphurmustard (SM). Methods Twenty percent of CC2 was prepared as a suspension or ointmentwith various chemical agents and its stability was evaluated by active chlorine assay. Theefficacy was evaluated in mice by recording the mortality after applying 29 LD50 of SM (LD50 =8.1 mg/kg dermally) and decontaminating it after 2 min with 200 mg of the formulation.Studies were also carried out with 10% and 20% CC2 in acacia and hydroxypropyl cellulose,and the suspensions were stored in polyethylene containers. The stability of the suspensionswas evaluated by active chlorine assay. The efficacy was evaluated by recording themortality after applying 29 LD50 of SM in mice and 12 LD50 of SM in rats (LD50 = 2.4 mg/kgdermally), and decontaminating it with the formulations. LD50 by different routes andprimary skin irritation test of CC2 were also carried out. Results CC2 reacted with peanutoil and neem oil, and was unstable in povidone iodine and Fuller’s earth. Good stability wasachieved with petroleum jelly, honey, polyvinyl pyrrolidone, calamine lotion, acacia andhydroxypropyl cellulose. Though CC2 was stable in lipophilic formulations, it did notprotect the animals. The hydrophilic formulations particularly acacia and hydroxypropylcellulose gave very good protection and was stable in the polyethylene containers for aperiod of 1 year. The efficacy of 20% CC2 was better than 10% CC2. The oral and dermalLD50 of CC2 was found to be above 5.0 g/kg. CC2 was also found to be nonirritant.Conclusion Twenty percent of CC2 in hydroxypropyl cellulose is better with respect tostability, efficacy and ease of decontamination. CC2 is also a safe chemical.展开更多
In the present work,hierarchical nanostructured titanium dioxide(TiO2) films were fabricated on Ti-25Nb-3Mo-2Sn-3Zr(TLM) alloy for biomedical applications via one-step anodization process in ethylene glycolbased elect...In the present work,hierarchical nanostructured titanium dioxide(TiO2) films were fabricated on Ti-25Nb-3Mo-2Sn-3Zr(TLM) alloy for biomedical applications via one-step anodization process in ethylene glycolbased electrolyte containing 0.5wt% NH4F.The nanostructured TiO2 films exhibited three distinct types depending on the anodization time:top irregular nanopores(INP)/beneath regular nanopores(RNP),top INP/middle regular nanotubes(RNT)/bottom RNP and top RNT with underlying RNP.The evolution of the nanostructured TiO2 films with anodization time demonstrated that self-organizing nanopores formed at the very beginning and individual nanotubes originated from underlying nanopore dissolution.Furthermore,a modified two-stage self-organizing mechanism was introduced to illustrate the growth of the nanostructured TiO2 films.Compared with TLM titanium alloy matrix,the TiO2 films with special nano-structure hold better hydrophilicity and higher specific surface area,which lays the foundation for their biomedical applications.展开更多
Titanium-oxide layer was grown on glass substrate by plasma-assisted chemical vapor deposition (PCVD) using oxygen gas plasma excited by radio-frequency power at 13.56 MHz in the pressure as low as 3mtorr at relativel...Titanium-oxide layer was grown on glass substrate by plasma-assisted chemical vapor deposition (PCVD) using oxygen gas plasma excited by radio-frequency power at 13.56 MHz in the pressure as low as 3mtorr at relatively low temperature below 400oC, and studied on the crystallographic properties with the hydrophilic behavior comparing to the layer deposited by low-pressure chemical vapor deposition (LPCVD). Raman spectra indicated anatase-phase TiO2 layer without amorphous-phase could be formed above 340oC by simultaneous supply of plasma-cracked and non-cracked titanium-tetra-iso-propoxide (TTIP) used as preliminary precursor. Surface Scanning Electron Microscope images indicated the PCVD-layer consists of distinct nanometer-size plate-like columnar grains, in contrast to rugged micrometer-size grains in the LPCVD-layer. Extremely small water contact angle about 5o in dark and the quick conversion to super-hydrophilicity by UV-irradiation with a light-power density as low as 50 W/cm2 were observed on the PCVD- layer grown at 380oC, while the large initial contact angle was above 40o and the response for the UV-irradiation was gradual on the LPCVD-layer.展开更多
Invasion of drilling fluid into natural gas hydrate deposits during drilling might damage the reservoir,induce hydrate dissociation and then cause wellbore instability and distortion of the data from well logging. Add...Invasion of drilling fluid into natural gas hydrate deposits during drilling might damage the reservoir,induce hydrate dissociation and then cause wellbore instability and distortion of the data from well logging. Adding nanoparticles into drilling fluid is an effective method in reducing the invasion of drilling fluid and enhancing borehole stability. However, the addition of nanoparticles might also introduce hydrate formation risk in borehole because they can act as the "seeds" for hydrate nucleation. This paper presents an experimental study of the effect of hydrophilic silica nanoparticle on gas hydrate formation in a dynamic methane/liquid-water system. In the experiment, the ultrapure water with and without1.0 wt%–6.0 wt% concentrations of silica nanoparticles, grain sizes of 20 and 50 nm, were pressurized by methane gas under varied conditions of temperature and pressure. The induction time, the gas consumption, and the average rate of gas consumption in the system were measured and compared to those in ultrapure water. The results show that a concentration of 4.0 wt% hydrophilic SiO_2 particles with a grain size of 50 nm has a relatively strong inhibition effect on hydrate formation when the initial experimental condition is 5.0 °C and 5.0 MPa. Compared to ultrapure water, the hydrophilic nano-SiO_2 fluid increases the induction time for hydrate formation by 194% and decreases the amount and average rate of hydrate formation by 10% and 17%, respectively. This inhibition effect may be attributed to the hydrophilicity,amount and aggregation of silica nanoparticle according to the results of water activity and zeta potential measurements. Our work also elucidates hydrophilic, instead of hydrophobic, nanoparticles can be added to the drilling fluid to maintain wellbore stability and to protect the hydrate reservoir from drilling mud damage, because they exhibit certain degree of hydrate inhibition which can reduce the risk of hydrate reformation and aggregation during gas hydrate or deep water drilling if their concentration can be controlled properly.展开更多
Nano-SiO_2 with high activity and mesopores was prepared through sol-gel synthesis followed by low-temperatureheat treatment and ball milling firstly in our experiments. TEM was performed to measure particle sizes. Ni...Nano-SiO_2 with high activity and mesopores was prepared through sol-gel synthesis followed by low-temperatureheat treatment and ball milling firstly in our experiments. TEM was performed to measure particle sizes. Nitrogenadsorption experiments were carried out to estimate specific surface area, porous distribution and porous ratio by BETand BJH methods. The content of Si-OH in SiO_2 surface was calculated by analysis of the results of hydrogen-oxygencontent mensuration (HOCM). As a result, appropriate heat treatment system and ball milling time are important topreparation for nano-SiO_2 with high activity and mesopores, which are 5~50 nm particles, 5~6 nm average aperture,85%~93% porous ratio, and 51%~55% Si-OH content in surface. Nano-SiO_2 with that structure has high surfaceenergy and activity. This process, which has simple facilities and operation rules, is a new way of preparation fornano-SiO_2 with high activity and mesopores.展开更多
The present status and development trends of nano-composite coatings were briefly introduced. The nano-SiO2 was dispersed into crylic acid resin by ultrasonic wave and high-energy ball milling, the influence of nano-S...The present status and development trends of nano-composite coatings were briefly introduced. The nano-SiO2 was dispersed into crylic acid resin by ultrasonic wave and high-energy ball milling, the influence of nano-SiO2 on shielding property of coatings was investigated. Relation between particle size distribution of original nano-SiO2 and its dispersal in water and alcohol after treatment were analyzed, respectively. The ultraviolet permeation rate of coatings filled with nano-SiO2 was detected by ultraviolet spectral photometer. And the particle size distribution of coatings was examined by TEM. The results show that particle size distribution is comparative convergence and smaller one order of magnitude after dispersal treatment. The size of most nano-SiO2 in coatings is smaller than 100nm, which indicates that the amount of nano-SiO2 in the resin is 20% (solid content of resin), the permeation rate of ultraviolet of composite coatings decreases to 20%. The research of its excellent ultraviolet shielding property mechanism indicates minor size and high surface energy of nano-SiO2 can produce different absorption, reflection and scatter actions to different wavelengths.展开更多
The mechanical properties of wood flour/high-density polyethylene composites(WPC)were improved by adding a small amount of nano-SiO_(2)to obtain a network-structured WPC with a continuous honeycomb-like nano-SiO_(2)ne...The mechanical properties of wood flour/high-density polyethylene composites(WPC)were improved by adding a small amount of nano-SiO_(2)to obtain a network-structured WPC with a continuous honeycomb-like nano-SiO_(2)network.The wood flour was modified with a fire retardant(a mixture of sodium octabonate and amidine urea phosphate)to improve its fire retardancy.The flexural properties,creep resistance,thermal expansion,and fire retardancy of the WPC were compared to a control(WPCCTRL)without nano-SiO_(2)or fire retardant.The flexural strength and modulus of the WPC containing only 0.55 wt.%nano-SiO_(2)were 6.6%and 9.1%higher than the control,respectively,while the creep strain and thermal expansion rate at 90°C were 33.8%and 13.6%lower,respectively.The cone calorimetry tests revealed that the nano-SiO_(2)network physically shielded the WPC,giving it lower heat release and smoke production rates.The thermal expansion was further decreased by incorporating fire retardants into the WPC,which showed the lowest total heat release and total smoke production and the highest mass retention.This study demonstrates a facile procedure for producing WPC with desired performances by forming a continuous honeycomb-like network by adding a small amount of nanoparticles.展开更多
A kind of modified epoxy resins was obtained by condensation of epoxy resin with silicic acid tetraethyl ester(TEOS) and nano-SiO2. The reactions were performed with hydrochloric acid as a catalyst at 63 ℃. The str...A kind of modified epoxy resins was obtained by condensation of epoxy resin with silicic acid tetraethyl ester(TEOS) and nano-SiO2. The reactions were performed with hydrochloric acid as a catalyst at 63 ℃. The structure, thermal stability and morphological characteristics of the modified epoxy resins were studied through infrared spectra(FT-IR) analysis, thermogravimetric(TG) analysis and scanning electron microscopy respectively. It has been found from the IR and TG study that modified epoxy resins have greater thermal stability than epoxy resins, and its thermal stability has been improved by the formation of inter-crosslinked network structure. The modified epoxy resins exhibit heterogeneous morphology and heterogeneity increases with more TEOS feeding, which in turn confirms the formation of inter-crosslinked network structure in modified epoxy resins.展开更多
基金funded by National Natural Science Foundation of China (grant number 42207083)the project of SINOREC (No.322052)
文摘In this study,to meet the stringent requirements on the hydrophobicity of nano-SiO_(2)particles for use in depressurization and enhanced injection operations in high-temperature and high-salinity oil reservoirs,secondary chemical grafting modification of nano-SiO_(2)is performed using a silane coupling agent to prepare superhydrophobic nano-SiO_(2) particles.Using these superhydrophobic nano-SiO_(2)particles as the core agent,and liquid paraffin or diesel as the dispersion medium,a uniform dispersion of nano-SiO_(2)particles is achieved under high-speed stirring,and a chemically enhanced water injection system with colloidal stability that can be maintained for more than 60 d is successfully developed.Using this system,a field test of depressurization and enhanced injection is carried out on six wells in an oilfield,and the daily oil production level is increased by 11 t.The cumulative increased water injection is 58784 m^(3),the effective rate of the measures was 100%,and the average validity period is 661 d.
基金Project(xjj2011096)supported by the Fundamental Research Fund for the Central Universities,ChinaProjects(50901058,51374174)supported by the National Natural Science Foundation of China
文摘Ta-containing TiO2 films with Ta contents of 5%, 20%, 33% (mole fraction) were sol-gel coated on the surface roughened Ti6AI4V alloy by dip coating method for biomedical applications. The Ta-TiO2 films on 1.5 mol/L NaOH-HCI pretreated substrate are adherent, but there are cracks for the sample with 33% Ta. X-ray photoelectron spectroscopy results show that Ti and Ta exist as TiP2 and Ta205 in the film, and A1 element is not detectable. X-ray diffraction and Raman scattering analyses reveal that the addition of Ta decreases crystallization of the films. Potentiodynamic polarization test in a Ca-free Hank's balanced solution demonstrates that the coating samples markedly improve the corrosion resistance compared with the polished sample. The addition of Ta impedes UV light-induced hydrophilic conversion of the coating samples. The sample with 20% Ta has enough film integrity and hydrophilic conversion rate, and is expected to possess good biological properties.
文摘Nanowires with anisotropic morphologies have been applied in various scientific and technological areas.It is also widely employed to fabricate nanowires into high-dimensional superstructures(arrays,networks etc.)to overcome the shortcomings of low-dimensional nanowires.However,typical strategies for constructing these superstructures are restricted to complicated and harsh synthetic conditions,not to mention unique 3D structures with advanced properties beyond common superstructures.Herein,we report an unusual network ofα-MnO_(2)nanowires with structure-induced hydrophilicity and conductivity.In the network,the nanowires are interconnected from all directions by nodes,and the 3D network structure is formed from the endless connection of nodes in a node-by-node way.The unique network structure brings about high hydrophilicity and conductivity,both of which are positive factors for an efficient electrocatalyst.Accordingly,the α-MnO_(2) network was tested for electrocatalytic water oxidation and showed significantly enhanced activity compared with isolatedα-MnO_(2)nanowires and 3Dα-MnO_(2)microspheres.This study not only provides a synthetic route toward an advanced network structure but also a new idea for the design of materials for electrochemistry with both efficient mass diffusion and charge transfer.
基金financially supported by the National Natural Science Foundation of China(U1663225)the Changjiang Scholar Program of Chinese Ministry of Education(IRT15R52)the program of Introducing Talents of Discipline to Universities-Plan 111(B20002)of Ministry of Science and Technology and the Ministry of Education of China and the project “Depollut Air”of Interreg V France-WallonieVlaanderen。
文摘Graphitic carbon nitride(g-C_(3)N_(4))has attracted great interest in photocatalysis and photoelectrocatalysis.However,their poor hydrophilicity poses a great challenge for their applications in aqueous environment.Here,we demonstrate synthesis of a hydrophilic bi-functional hierarchical architecture by the assembly of B-doped g-C_(3)N_(4)nanoplatelets.Such hierarchical B-doped g-C_(3)N_(4)material enables full utilization of their highly enhanced visible light absorption and photogenerated carrier separation in aqueous medium,leading to an excellent photocatalytic H_(2)O_(2)production rate of 4240.3μM g^(-1)h^(-1),2.84,2.64 and 2.13 times higher than that of the bulk g-C_(3)N_(4),g-C_(3)N_(4)nanoplatelets and bulk B doped g-C_(3)N_(4),respectively.Photoanodes based on these hierarchical architectures can generate an unprecedented photocurrent density of 1.72 m A cm^(-2)at 1.23 V under AM 1.5 G illumination for photoelectrochemical water splitting.This work makes a fundamental improvement towards large-scale exploitation of highly active,hydrophilic and stable metal-free g-C_(3)N_(4)photocatalysts for various practical applications.
基金Funded by Key Scientific and Technological Items of the Ministry of Education (No.99087) .
文摘TiO2-SiO2 thin films have been prepared on slide glass substrates by sol-gel method, and the effect of SiO2 additive on photo-generated hydrophilicity of TiO2 thin film was investigated by measuring the contact angle of water, the microstructure, the transmittance, the photocatalytic activity and the specific surface area . The results showed that 10mol% of SiO2 additive was the most effective for decreasing contact angle of water. The SiO2 additive of less than 30mol% has a suppressive effect on the crystal growth of anatase in calcinations, resulting in a large surface area. Consequently, the super-hydrophilicity was improved.
基金financially supported by the National Natural Science Foundation of China(22378204,22008121,51790492)the National Outstanding Youth Science Fund Project of National Natural Science Foundation of China(T2125004)+1 种基金the Funding of NJUST(No.TSXK2022D002)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX23_0454)。
文摘The overall photocatalytic CO_(2) reduction reaction(OPCRR)that can directly convert CO_(2) and H_(2)O into fuels represents a promising renewable energy conversion technology.As a typical redox reaction,the OPCRR involves two half-reactions:the CO_(2) reduction half-reaction(CRHR)and the water oxidation half-reaction(WOHR).Generally,both half-reactions can be promoted by adjusting the wettability of catalysts.However,there is a contradiction in wettability requirements for the two half-reactions.Specifically,CRHR prefers a hydrophobic surface that can accumulate more CO_(2) molecules on the active sites,ensuring the appropriate ratio of gas-phase(CO_(2))to liquid-phase(H_(2)O)reactants.Conversely,the WOHR prefers a hydrophilic surface that can promote the departure of the gaseous product(O_(2))from the catalyst surface,preventing isolation between active sites and the reactant(H_(2)O).Here,we successfully reconciled the contradictory wettability requirements for the CRHR and WOHR by creating an alternately hydrophobic catalyst.This was achieved through a selectively hydrophobic modification method and a charge-transfer-control strategy.Consequently,the collaboratively promoted CRHR and WOHR led to a significantly enhanced OPCRR with a solar-to-fuel conversion efficiency of 0.186%.Notably,in ethanol production,the catalyst exhibited a 10.64-fold increase in generation rate(271.44μmol g^(-1)h~(-1))and a 4-fold increase in selectivity(55.77%)compared to the benchmark catalyst.This innovative approach holds great potential for application in universal overall reactions involving gas participation.
基金supported by the National Natural Science Foundation of China(21908082,22278426,and 22178154)the Jiangsu Funding Program for Excellent Postdoctoral Talent(2022ZB629)+1 种基金the Natural Science Foundation of Jiangsu Province(BK20221367)the China Postdoctoral Science Foundation(2021M701472)。
文摘LiMn_(2)O_(4)(LMO)electrochemical lithium-ion pump has gained widespread attention due to its green,high efficiency,and low energy consumption in selectively extracting lithium from brine.However,collapse of crystal structure and loss of lithium extraction capacity caused by Mn dissolution loss limits its industrialized application.Hence,a multifunctional coating was developed by depositing amorphous AlPO_(4)on the surface of LMO using sol-gel method.The characterization and electrochemical performance test provided insights into the mechanism of Li^(+)embedment and de-embedment and revealed that multifunctional AlPO_(4)can reconstruct the physical and chemical state of LMO surface to improve the interface hydrophilicity,promote the transport of Li^(+),strengthen cycle stability.Remarkably,after 20 cycles,the capacity retention rate of 0.5AP-LMO reached 93.6%with only 0.147%Mn dissolution loss.The average Li^(+)release capacity of 0.5AP-LMO//Ag system in simulated brine is 28.77 mg/(g h),which is 90.4%higher than LMO.Encouragingly,even in the more complex Zabuye real brine,0.5AP-LMO//Ag can still maintain excellent lithium extraction performance.These results indicate that the 0.5AP-LMO//Ag lithium-ion pump shows promising potential as a Li^(+)selective extraction system.
文摘Objective To evaluate CC2 (N, N’-dichloro-bis [2, 4, 6-trichlorophenyl] urea) invarious hydrophilic and lipophilic formulations as a personnel decontaminant for sulphurmustard (SM). Methods Twenty percent of CC2 was prepared as a suspension or ointmentwith various chemical agents and its stability was evaluated by active chlorine assay. Theefficacy was evaluated in mice by recording the mortality after applying 29 LD50 of SM (LD50 =8.1 mg/kg dermally) and decontaminating it after 2 min with 200 mg of the formulation.Studies were also carried out with 10% and 20% CC2 in acacia and hydroxypropyl cellulose,and the suspensions were stored in polyethylene containers. The stability of the suspensionswas evaluated by active chlorine assay. The efficacy was evaluated by recording themortality after applying 29 LD50 of SM in mice and 12 LD50 of SM in rats (LD50 = 2.4 mg/kgdermally), and decontaminating it with the formulations. LD50 by different routes andprimary skin irritation test of CC2 were also carried out. Results CC2 reacted with peanutoil and neem oil, and was unstable in povidone iodine and Fuller’s earth. Good stability wasachieved with petroleum jelly, honey, polyvinyl pyrrolidone, calamine lotion, acacia andhydroxypropyl cellulose. Though CC2 was stable in lipophilic formulations, it did notprotect the animals. The hydrophilic formulations particularly acacia and hydroxypropylcellulose gave very good protection and was stable in the polyethylene containers for aperiod of 1 year. The efficacy of 20% CC2 was better than 10% CC2. The oral and dermalLD50 of CC2 was found to be above 5.0 g/kg. CC2 was also found to be nonirritant.Conclusion Twenty percent of CC2 in hydroxypropyl cellulose is better with respect tostability, efficacy and ease of decontamination. CC2 is also a safe chemical.
基金Supported by the National Natural Science Foundation of China(No.51372169)Natural Science Foundation of Tianjin(No.11JCZDJC17300)
文摘In the present work,hierarchical nanostructured titanium dioxide(TiO2) films were fabricated on Ti-25Nb-3Mo-2Sn-3Zr(TLM) alloy for biomedical applications via one-step anodization process in ethylene glycolbased electrolyte containing 0.5wt% NH4F.The nanostructured TiO2 films exhibited three distinct types depending on the anodization time:top irregular nanopores(INP)/beneath regular nanopores(RNP),top INP/middle regular nanotubes(RNT)/bottom RNP and top RNT with underlying RNP.The evolution of the nanostructured TiO2 films with anodization time demonstrated that self-organizing nanopores formed at the very beginning and individual nanotubes originated from underlying nanopore dissolution.Furthermore,a modified two-stage self-organizing mechanism was introduced to illustrate the growth of the nanostructured TiO2 films.Compared with TLM titanium alloy matrix,the TiO2 films with special nano-structure hold better hydrophilicity and higher specific surface area,which lays the foundation for their biomedical applications.
文摘Titanium-oxide layer was grown on glass substrate by plasma-assisted chemical vapor deposition (PCVD) using oxygen gas plasma excited by radio-frequency power at 13.56 MHz in the pressure as low as 3mtorr at relatively low temperature below 400oC, and studied on the crystallographic properties with the hydrophilic behavior comparing to the layer deposited by low-pressure chemical vapor deposition (LPCVD). Raman spectra indicated anatase-phase TiO2 layer without amorphous-phase could be formed above 340oC by simultaneous supply of plasma-cracked and non-cracked titanium-tetra-iso-propoxide (TTIP) used as preliminary precursor. Surface Scanning Electron Microscope images indicated the PCVD-layer consists of distinct nanometer-size plate-like columnar grains, in contrast to rugged micrometer-size grains in the LPCVD-layer. Extremely small water contact angle about 5o in dark and the quick conversion to super-hydrophilicity by UV-irradiation with a light-power density as low as 50 W/cm2 were observed on the PCVD- layer grown at 380oC, while the large initial contact angle was above 40o and the response for the UV-irradiation was gradual on the LPCVD-layer.
基金supported by National Youth Top-notch Talent Support Programthe National Natural Science Foundationof China(41672367,51704266)+2 种基金China Geological Survey Project(DD20160216)Qingdao National Laboratory for Marine Science and Technology Open Fund(QNLM2016ORP0203)Experimental Apparatus Improvement Program of CUG(SJ-201613)
文摘Invasion of drilling fluid into natural gas hydrate deposits during drilling might damage the reservoir,induce hydrate dissociation and then cause wellbore instability and distortion of the data from well logging. Adding nanoparticles into drilling fluid is an effective method in reducing the invasion of drilling fluid and enhancing borehole stability. However, the addition of nanoparticles might also introduce hydrate formation risk in borehole because they can act as the "seeds" for hydrate nucleation. This paper presents an experimental study of the effect of hydrophilic silica nanoparticle on gas hydrate formation in a dynamic methane/liquid-water system. In the experiment, the ultrapure water with and without1.0 wt%–6.0 wt% concentrations of silica nanoparticles, grain sizes of 20 and 50 nm, were pressurized by methane gas under varied conditions of temperature and pressure. The induction time, the gas consumption, and the average rate of gas consumption in the system were measured and compared to those in ultrapure water. The results show that a concentration of 4.0 wt% hydrophilic SiO_2 particles with a grain size of 50 nm has a relatively strong inhibition effect on hydrate formation when the initial experimental condition is 5.0 °C and 5.0 MPa. Compared to ultrapure water, the hydrophilic nano-SiO_2 fluid increases the induction time for hydrate formation by 194% and decreases the amount and average rate of hydrate formation by 10% and 17%, respectively. This inhibition effect may be attributed to the hydrophilicity,amount and aggregation of silica nanoparticle according to the results of water activity and zeta potential measurements. Our work also elucidates hydrophilic, instead of hydrophobic, nanoparticles can be added to the drilling fluid to maintain wellbore stability and to protect the hydrate reservoir from drilling mud damage, because they exhibit certain degree of hydrate inhibition which can reduce the risk of hydrate reformation and aggregation during gas hydrate or deep water drilling if their concentration can be controlled properly.
文摘Nano-SiO_2 with high activity and mesopores was prepared through sol-gel synthesis followed by low-temperatureheat treatment and ball milling firstly in our experiments. TEM was performed to measure particle sizes. Nitrogenadsorption experiments were carried out to estimate specific surface area, porous distribution and porous ratio by BETand BJH methods. The content of Si-OH in SiO_2 surface was calculated by analysis of the results of hydrogen-oxygencontent mensuration (HOCM). As a result, appropriate heat treatment system and ball milling time are important topreparation for nano-SiO_2 with high activity and mesopores, which are 5~50 nm particles, 5~6 nm average aperture,85%~93% porous ratio, and 51%~55% Si-OH content in surface. Nano-SiO_2 with that structure has high surfaceenergy and activity. This process, which has simple facilities and operation rules, is a new way of preparation fornano-SiO_2 with high activity and mesopores.
文摘The present status and development trends of nano-composite coatings were briefly introduced. The nano-SiO2 was dispersed into crylic acid resin by ultrasonic wave and high-energy ball milling, the influence of nano-SiO2 on shielding property of coatings was investigated. Relation between particle size distribution of original nano-SiO2 and its dispersal in water and alcohol after treatment were analyzed, respectively. The ultraviolet permeation rate of coatings filled with nano-SiO2 was detected by ultraviolet spectral photometer. And the particle size distribution of coatings was examined by TEM. The results show that particle size distribution is comparative convergence and smaller one order of magnitude after dispersal treatment. The size of most nano-SiO2 in coatings is smaller than 100nm, which indicates that the amount of nano-SiO2 in the resin is 20% (solid content of resin), the permeation rate of ultraviolet of composite coatings decreases to 20%. The research of its excellent ultraviolet shielding property mechanism indicates minor size and high surface energy of nano-SiO2 can produce different absorption, reflection and scatter actions to different wavelengths.
基金supported by the National Key Research and Development Program of China(Nos.2019YFD1101204 and 2019YFD1101203)the National Natural Science Foundation of China(Nos.31870547 and 31901251)+3 种基金the Project funded by China Postdoctoral Science Foundation(No.2019M652919)the Research and Development Program in Key Areas of Guangdong Province(No.2020B020216002)the Project of Guangzhou Municipal Key Laboratory of Woody Biomass Functional New Materials(No.201905010005)the Project of Key Disciplines of Forestry Engineering of Bureau of Education of Guangzhou Municipality.
文摘The mechanical properties of wood flour/high-density polyethylene composites(WPC)were improved by adding a small amount of nano-SiO_(2)to obtain a network-structured WPC with a continuous honeycomb-like nano-SiO_(2)network.The wood flour was modified with a fire retardant(a mixture of sodium octabonate and amidine urea phosphate)to improve its fire retardancy.The flexural properties,creep resistance,thermal expansion,and fire retardancy of the WPC were compared to a control(WPCCTRL)without nano-SiO_(2)or fire retardant.The flexural strength and modulus of the WPC containing only 0.55 wt.%nano-SiO_(2)were 6.6%and 9.1%higher than the control,respectively,while the creep strain and thermal expansion rate at 90°C were 33.8%and 13.6%lower,respectively.The cone calorimetry tests revealed that the nano-SiO_(2)network physically shielded the WPC,giving it lower heat release and smoke production rates.The thermal expansion was further decreased by incorporating fire retardants into the WPC,which showed the lowest total heat release and total smoke production and the highest mass retention.This study demonstrates a facile procedure for producing WPC with desired performances by forming a continuous honeycomb-like network by adding a small amount of nanoparticles.
文摘A kind of modified epoxy resins was obtained by condensation of epoxy resin with silicic acid tetraethyl ester(TEOS) and nano-SiO2. The reactions were performed with hydrochloric acid as a catalyst at 63 ℃. The structure, thermal stability and morphological characteristics of the modified epoxy resins were studied through infrared spectra(FT-IR) analysis, thermogravimetric(TG) analysis and scanning electron microscopy respectively. It has been found from the IR and TG study that modified epoxy resins have greater thermal stability than epoxy resins, and its thermal stability has been improved by the formation of inter-crosslinked network structure. The modified epoxy resins exhibit heterogeneous morphology and heterogeneity increases with more TEOS feeding, which in turn confirms the formation of inter-crosslinked network structure in modified epoxy resins.